Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Control-Oriented Modelling of a Wankel Rotary Engine: A Synthesis Approach of State Space and Neural Networks

2020-04-14
2020-01-0253
The use of Wankel rotary engines as a range extender has been recognised as an appealing method to enhance the performance of Hybrid Electric Vehicles (HEV). They are effective alternatives to conventional reciprocating piston engines due to their considerable merits such as lightness, compactness, and higher power-to-weight ratio. However, further improvements on Wankel engines in terms of fuel economy and emissions are still needed. The objective of this work is to investigate the engine modelling methodology that is particularly suitable for the theoretical studies on Wankel engine dynamics and new control development. In this paper, control-oriented models are developed for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) principles and the artificial Neural Networks (NN), the Wankel engine models are derived by leveraging both first-principle knowledge and engine test data.
Journal Article

Initial Investigations into the Benefits and Challenges of Eliminating Port Overlap in Wankel Rotary Engines

2020-04-14
2020-01-0280
The Wankel rotary engine historically found limited success in automotive applications due in part to poor combustion efficiency and challenges around emissions. This is despite its significant advantages in terms of power density, compactness, vibrationless operation, and reduced parts count in relation to the 4-stroke reciprocating engine, which is now-dominant in the automotive market. A large part of the reason for the poor fuel economy and high hydrocarbon emissions of the Wankel engine is that there is a very significant amount of overlap when the ports are opened and/or closed by the rotor apices (so-called peripheral ports). This paper investigates the benefits of zero overlap from a production engine with this characteristic and the effect of configuring a peripherally-ported Wankel engine in such a manner.
Technical Paper

Mass Benefit Analysis of 4-Stroke and Wankel Range Extenders in an Electric Vehicle over a Defined Drive Cycle with Respect to Vehicle Range and Fuel Consumption

2019-04-02
2019-01-1282
The gradual push towards electric vehicles (EV) as a primary mode of transport has resulted in an increased focus on electric and hybrid powertrain research. One answer to the consumers’ concern over EV range is the implementation of small combustion engines as generators to supplement the energy stored in the vehicle battery. Since these range extender generators have the opportunity to run in a small operating window, some engine types that have historically struggled in an automotive setting have the potential to be competitive. The relative merits of two different engine options for range extended electric vehicles are simulated in vehicle across the WLTP drive cycle. The baseline electric vehicle chosen was the BMW i3 owing to its availability as an EV with and without a range extender gasoline engine.
X