Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Assessment of the Influence of GDI Injection System Parameters on Soot Emission and Combustion Stability through a Numerical and Experimental Approach

2015-09-06
2015-24-2422
The next steps of the current European and US legislation, EURO 6c and LEV III, and the incoming new test cycles will impose more severe restrictions on pollutant emissions for Gasoline Direct Injection (GDI) engines. In particular, soot emission limits will represent a challenge for the development of this kind of engine concept, if injection and after-treatment systems costs are to be minimized at the same time. The paper illustrates the results obtained by means of a numerical and experimental approach, in terms of soot emissions and combustion stability assessment and control, especially during catalyst-heating conditions, where the main soot quantity in the test cycle is produced. A number of injector configurations has been designed by means of a CAD geometrical analysis, considering the main effects of the spray target on wall impingement.
Technical Paper

Development of a CFD Approach to Model Fuel-Air Mixing in Gasoline Direct-Injection Engines

2012-04-16
2012-01-0146
Direct-injection represents a consolidated technology to increase performance and efficiency in spark-ignition engines. It reduces the knock tendency and makes engine downsizing possible through the use of turbocharging. Better control of CO and HC emissions at cold-start is also ensured since there is no wall-impingement in the intake port. However, to take advantages of all the theoretical benefits derived from GDI technology, detailed investigations of both fuel-air mixing and combustion processes are necessary to extend the stratified charge operations in the engine map and to reduce soot emissions, that are now severely regulated by emission standards. In this work, the authors developed a CFD methodology to investigate and optimize the fuel-air mixing process in direct-injection, spark-ignition engines. The Eulerian-Lagrangian approach is used to model the evolution of the fuel spray emerging from a multi-hole injector.
Technical Paper

Numerical Study on Multiple Injection Strategies in DISI Engines for Particulate Emission Control

2012-04-16
2012-01-0400
In this work a numerical analysis of multiple-injection strategy in homogeneous operation in DISI engines is presented. Moving toward Euro 6 emission standards, one of the main challenges for GDI engines is the reduction of particulate emission in terms of mass and particle number. In fact, in stratified operation, the droplets injected during compression stroke may cause a significant amount of soot production, due to locally non-premixed combustion. Besides, in medium and high load, the liner and piston spray impingement is another possible reason of production of soot emission. In order to meet the required performance and emission targets, focusing on the reduction of particulate emission, a multiple injection strategy can be considered as an option to control both the mixture stratification and the wall impingement. In particular, in this work a multiple injection strategy during intake stroke in homogeneous condition is analyzed.
X