Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Numerical Methodology for the Multi-Objective Optimization of an Automotive DI Diesel Engine

2013-09-08
2013-24-0019
Nowadays, an automotive DI Diesel engine is demanded to provide an adequate power output together with limit-complying NOx and soot emissions so that the development of a specific combustion concept is the result of a trade-off between conflicting objectives. In other words, the development of a low-emission DI diesel combustion concept could be mathematically represented as a multi-objective optimization problem. In recent years, genetic algorithm and CFD simulations were successfully applied to this kind of problem. However, combining GA optimization with actual CFD-3D combustion simulations can be too onerous since a large number of simulations is usually required, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes.
Technical Paper

Artificial Intelligence Methodologies for Oxygen Virtual Sensing at Diesel Engine Intake

2012-04-16
2012-01-1153
In the last decades, worldwide automotive regulations induced the industry to dramatically increase the application of electronics in the control of the engine and of the pollutant emissions reduction systems. Besides the need of engine control, suitable fault diagnosis tools had also to be developed, in order to fulfil OBD-II and E-OBD requirements. At present, one of the problems in the development of Diesel engines is represented by the achievement of an ever more sharp control on the systems used for the pollutant emission reduction. In particular, as far as NOx gas is concerned, EGR systems are mature and widely used, but an ever higher efficiency in terms of emissions abatement, requires to determine as better as possible the actual oxygen content in the charge at the engine intake manifold, also in dynamic conditions, i.e. in transient engine operation.
Technical Paper

Development and Software-in-the-Loop Validation of an Artificial Neural Network-Based Engine Simulator

2022-09-16
2022-24-0029
Due to the ever increasingly stringent emission regulations for passenger vehicles, the efficiency and performance increase of Spark Ignition (SI) engines have been under the focus of the engine manufacturers. The quest for efficiency and performance increase has led to the development of increasingly complex powertrains and control strategies. The development process requires novel methods that feature a smooth transition between the real and the virtual prototypes. Furthermore, to reduce the development time and cost, developing an engine simulator with a low computational effort and good accuracy, which predicts the engine behavior on the entire operating range, plays a crucial role. This work proposes an Artificial Intelligence-based engine simulator for a Spark Ignition engine. The simulator relies on Neural Networks for the calculation of the main combustion metrics. In the first part of this paper, the data acquired at the engine test cell are analyzed.
Technical Paper

OBD Engine Fault Detection Using a Neural Approach

2001-03-05
2001-01-0559
The present work is the continuation of the research activity developed by the same authors in last years about the use of recent technologies (Artificial Neural Networks) for the set up of “software redundancy” modules to be implemented On Board for the use in Diagnostic Systems. In the present work, a system based on Artificial Neural Networks models for automotive engines Fault Diagnosis and Isolation purposes is set-up and analysed. Four sensors/actuators (throttle valve, rotational speed, torque and intake manifold pressure) are considered, and the respective acquired data are used to train and test four ANN modules correlating the different quantities. An FDI scheme is presented which generates fault codes sequences by suitably treating the primary residuals, obtained by comparing experimental data with the calculated ones by the ANN modules. The robust fault isolation capabilities of the proposed FDI system are presented and discussed.
Technical Paper

On Line Working Neural Estimator of SI Engines Operational Parameters

2000-03-06
2000-01-1247
In this paper the evaluation of the suitability of the Artificial Neural Networks for setting up simulation modules for “analytical redundancy” was further carried out. The performance of the ANN modules was enhanced, by taking into account the engine dynamics for the simulation of fast engine transients and obtaining satisfactory results. Working toward actual on board application in Fault Diagnosis systems, some ANN modules were implemented in an on-line system which acquires signals from an engine mounted on a test bench and compares in real time the experimental values with the estimated ones. In this way, it was possible to perform long duration tests of ANN's behaviour, substantially confirming the results of the conventional off-line analysis.
X