Refine Your Search

Topic

Author

Search Results

Technical Paper

A Machine Learning Modeling Approach for High Pressure Direct Injection Dual Fuel Compressed Natural Gas Engines

2020-09-15
2020-01-2017
The emissions and efficiency of modern internal combustion engines need to be improved to reduce their environmental impact. Many strategies to address this (e.g., alternative fuels, exhaust gas aftertreatment, novel injection systems, etc.) require engine calibrations to be modified, involving extensive experimental data collection. A new approach to modeling and data collection is proposed to expedite the development of these new technologies and to reduce their upfront cost. This work evaluates a Gaussian Process Regression, Artificial Neural Network and Bayesian Optimization based strategy for the efficient development of machine learning models, intended for engine optimization and calibration. The objective of this method is to minimize the size of the required experimental data set and reduce the associated data collection cost for engine modeling.
Technical Paper

Ammonia Emissions from Combustion in Gasoline Engines

2023-10-31
2023-01-1655
Forthcoming worldwide emissions regulations will start regulating ammonia emissions from light duty vehicles. At present, most light duty vehicles are powered by gasoline spark ignition engines. Sources of ammonia emission from such engines can be in-cylinder reactions (i.e. combustion) or downstream reactions across aftertreatment devices, particularly three-way catalysts. The latter has been known to be a major source of ammonia emissions from gasoline vehicles and has been extensively investigated. The former (combustion), less so, and thus is the subject of this work. A two-zone thermodynamic spark ignition engine model with a comprehensive chemical kinetics framework (C3MechV3.3 mechanism), after being validated against experimental ammonia emissions data, is used to study ammonia formation during combustion.
Technical Paper

An Experimental and Numerical Study of Combustion Chamber Design for Lean-Burn Natural Gas Engines

1996-08-01
961672
In this paper a study of the squish-generated charge motion in the combustion chamber of a natural gas engine is reported. A combination of both numerical simulations and actual engine tests was used to correlate the turbulence level at the spark plug location with performance and cylinder pressure data for three different chamber configurations. The higher-turbulence combustion chamber showed an average 1.5% reduction in brake specific fuel consumption in comparison with the lower turbulence level combustion chambers. The emission levels from the high-turbulence case were, however, generally higher than those from the lower-turbulence combustion chambers.
Technical Paper

Application of Fuel Momentum Measurement Device for Direct Injection Natural Gas Engines

2015-04-14
2015-01-0915
In direct-injection engines, combustion and emission formation is strongly affected by injection quality. Injection quality is related to mass-flow rate shape, momentum rate shape, stability of pulses as well as mechanical and hydraulic delays associated with fuel injection. Finding these injector characteristics aids the interpretation of engine experiments and design of new injection strategies. The goal of this study is to investigate the rate of momentum for the single and post injections for high-pressure direct-injection natural gas injectors. The momentum measurement method has been used before to study momentum rate of injection for single and split injections for diesel sprays. In this paper, a method of momentum measurement for gas injections is developed in order to present transient momentum rate shape during injection timing. In this method, a gas jet impinges perpendicularly on a pressure transducer surface.
Technical Paper

Application of an In-Cylinder Local Infrared Absorption Fuel Concentration Sensor in a Diesel-Ignited Dual-Fuel Engine

2016-10-17
2016-01-2310
As global energy demands continue to be met with ever evolving and stricter emissions requirements, natural gas (NG) has become a highly researched alternative to conventional fossil fuels in many industrial sectors. Transportation is one such field that can utilize the benefits of NG as a primary fuel for use in internal combustion engines (ICEs). In the context of heavy-duty on-highway transportation applications, diesel-ignited dual-fuel (DIDF) combustion of NG has been identified as a commercially viable alternative technology. Previous investigations of DIDF have examined the various trends present across the spectrum of DIDF operating space. However, in-cylinder processes are still not well understood and this investigation aims to further understanding in this area. An in-cylinder, local infrared absorption fuel concentration sensor is used to examine in-cylinder processes by comparison with previous optical and thermodynamic studies.
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Autoignition and Emission Characteristics of Gaseous Fuel Direct Injection Compression Ignition Combustion

2007-04-16
2007-01-0131
An experimental investigation of the autoignition and emission characteristics of transient turbulent gaseous fuel jets in heated and compressed air was conducted in a shock tube facility. Experiments were performed at an initial pressure of 30 bar with initial oxidizer temperatures ranging from 1200 to 1400 K, injection pressures ranging from 60 to 150 bar, and injection durations ranging from 1.0 to 2.5 ms. Methane and 90.0% methane/10.0% ethane blend were used as fuel. Under the operating conditions studied, increasing temperature resulted in a significant decrease in autoignition delay time. Increasing the injection pressure decreased ignition delay as well. The downstream location of the ignition kernel relative to the jet penetration distance was found to be in the range, 0.4
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Technical Paper

Cold Start Particulate Emissions from a Second Generation DI Gasoline Engine

2007-07-23
2007-01-1931
Spray guided Direct Injection Gasoline Engines are a key enabler to reducing CO2 emissions and improving the fuel economy of light duty vehicles. Particulate emissions from these engines have been shown to be lower than from first generation direct injection gasoline engines, but they may still be significantly higher than port fuel injected engines due to the reduced time available for mixture preparation and increased incidence of fuel impingement on the piston crown and combustion chamber surfaces. These factors are particularly severe in the period following a cold start. Both nuclei and accumulation mode particle size and number concentration were measured using a Cambustion differential mobility spectrometer. These data are reported for different coolant temperature intervals during the warm-up period. The bulk composition was determined using thermo-gravimetric analysis, and PM mass fractions are given for different volatility ranges and for elemental carbon.
Technical Paper

Combustion Measurement and Simulation With Natural Gas Fuelling of a Single-Cylinder Spark-Ignition Engine

1989-11-01
891314
Combustion of natural gas in a spark-ignition engine has been studied experimentally in a single-cylinder research engine, as well as analytically with the aid of a thick-flame burning simulation. Cylinder pressure measurements, averaged over 100 cycles, have been used in determining average combustion progress an cyclic variations in early burning time. The dependence of early (0-10%) and main (10-90%) combustion durations on load, speed, equivalence ratio, and chamber geometry (disc vs. bathtub) have been determined. A combustion simulation based on laminar burning at the Taylor microscale, with rapid flame propagation in regions of concentrated vorticity, has been used to estimate burning zone thickness, flame propagation rate, and the amplitude of cyclic variations in the early combustion period. The simulation provides a good representation of combustion over a wide range of operating conditions.
Technical Paper

Combustion and Emissions of Paired-Nozzle Jets in a Pilot-Ignited Direct-Injection Natural Gas Engine

2016-04-05
2016-01-0807
This paper examines the combustion and emissions produced using a prototype fuel injector nozzle for pilot-ignited direct-injection natural gas engines. In the new geometry, 7 individual equally-spaced gas injection holes were replaced by 7 pairs of closely-aligned holes (“paired-hole nozzle”). The paired-hole nozzle was intended to reduce particulate formation by increasing air entrainment due to jet interaction. Tests were performed on a single-cylinder research engine at different speeds and loads, and over a range of fuel injection and air handling conditions. Emissions were compared to those resulting from a reference injector with equally spaced holes (“single-hole nozzle”). Contrary to expectations, the CO and PM emissions were 3 to 10 times higher when using the paired-hole nozzles. Despite the large differences in emissions, the relative change in emissions in response to parametric changes was remarkably similar for single-hole and paired-hole nozzles.
Technical Paper

Combustion of LPG in a Spark-Ignition Engine

2004-03-08
2004-01-0974
Tax concessions promote the use of Liquefied Petroleum Gas (LPG) fuel for automotive use in Europe. Modelling of the LPG evaporation process shows the importance of drawing the liquid from the tank rather than the gas, otherwise the most volatile component (propane) is used more quickly and the composition of the remaining fuel changes. It is shown that the LPG components have similar calorific values to gasoline, however injecting the LPG as a gas into the inlet port causes a loss of volumetric efficiency and peak power. The experimental results showed: The LPG fuels have similar burn rates and optimum ignition timing to gasoline. The Lean Mixture Limit (LML) of the gaseous fuels was weaker than that for gasoline.
Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Technical Paper

Conditional Source-Term Estimation for the Numerical Simulation of Turbulent Combustion in Homogeneous-Charge SI Engines

2014-10-13
2014-01-2568
Conditional source-term estimation (CSE) is a novel chemical closure method for the simulation of turbulent combustion. It is less restrictive than flamelet-based models since no assumption is made regarding the combustion regime of the flame; moreover, it is computationally cheaper than conventional conditional moment closure (CMC) models. To date, CSE has only been applied for simulating canonical laboratory flames such as steady Bunsen burner flames. Industry-relevant problems pose the challenge of accurately modelling a transient ignition process in addition to involving complex domaingeometries. In this work, CSE is used to model combustion in a homogeneous-charge natural gas fuelled SI engine. The single cylinder Ricardo Hydra research engine studied here has a relatively simple chamber geometry which is represented by an axisymmetric mesh; moving-mesh simulations are conducted using the open-source computational fluid dynamics software, OpenFOAM.
Technical Paper

Cycle-by-Cycle Variations in Exhaust Temperatures Using Thermocouple Compensation Techniques

2006-04-03
2006-01-1197
Exhaust gas temperatures in a 1.4 L, sparked ignition engine have been measured using fine wire thermocouples at different loads and speeds. However the thermocouples are not fast enough to resolve the rapid change in exhaust temperature. This paper discusses a new thermocouple compensation technique to resolve the cycle-by-cycle variations in exhaust temperature by segmentation. Simulation results show that the technique can find the lower time constants during blowdown, reducing the bias from 28 to 4%. Several estimators and model structures have been compared. The best one is the difference equation-least squares technique, which has the combined error between -4.4 to 7.6% at 60 dB signal-to-noise ratio. The compensated temperatures have been compared against combustion parameters on a cycle-by-cycle basis. The results show that the cycle-by-cycle variations of the exhaust temperatures and combustion are correlated.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Development of a Research-Oriented Cylinder Head with Modular Injector Mounting and Access for Multiple In-Cylinder Diagnostics

2017-09-04
2017-24-0044
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
Technical Paper

Direct-Injected Hydrogen-Methane Mixtures in a Heavy-Duty Compression Ignition Engine

2006-04-03
2006-01-0653
A diesel pilot-ignited, high-pressure direct-injection of natural gas heavy-duty single-cylinder engine was fuelled with both natural gas and blends of 10% and 23% by volume hydrogen in methane. A single operating condition (6 bar GIMEP, 0.5 ϕ, 800 RPM, 40%EGR) was selected, and the combustion phasing was varied from advanced (mid-point of combustion at top-dead-center) to late (mid-point of combustion at 15°ATDC). Replacing the natural gas with hydrogen/methane blend fuels was found to have a significant influence on engine emissions and on combustion stability. The use of 10%hydrogen was found to slightly reduce PM, CO, and tHC emissions, while improving combustion stability. 23%hydrogen was found to substantially reduce CO and tHC emissions, while slightly increasing NOx. The greatest reductions in CO and tHC, along with a significant reduction in PM, were observed at the latest combustion timings, where combustion stability was lowest.
Technical Paper

Directly Injected Natural Gas Fueling of Diesel Engines

1996-08-01
961671
A new injector has been designed for sequential injection of high-pressure natural gas and a quantity of liquid diesel fuel directly into diesel engine cylinders late in the compression stroke. Injected a few degrees before the natural gas, the pilot liquid fuel auto-ignites and serves, as it burns, to ignite the gaseous fuel which enters the chamber as an underexpanded sonic jet generating high local turbulence. Tests on a single-cylinder two-stroke engine with full electronic control have demonstrated the capability of this fueling method to nearly match conventional diesel engine efficiency over a wide range of load and substantially reduce the emissions of oxides of nitrogen (NOx), particulate mater (PM) and carbon dioxide (CO2).
Technical Paper

Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion

2016-04-05
2016-01-0792
Diesel-ignited dual-fuel (DIDF) combustion of natural gas (NG) is a promising strategy to progress the application of NG as a commercially viable compression ignition engine fuel. Port injection of gaseous NG applied in tandem with direct injection of liquid diesel fuel as an ignition source permits a high level of control over cylinder charge preparation, and therefore combustion. Across the broad spectrum of possible combustion conditions in DIDF operation, different fundamental mechanisms are expected to dominate the fuel conversion process. Previous investigations have advanced the understanding of which combustion mechanisms are likely present under certain sets of conditions, permitting the successful modeling of DIDF combustion for particular operating modes. A broader understanding of the transitions between different combustion modes across the spectrum of DIDF warrants further effort.
X