Refine Your Search

Topic

Search Results

Journal Article

A Robust Stability Control System for a Hybrid Electric Vehicle Equipped with Electric Rear Axle Drive

2016-04-05
2016-01-1649
Optimizing/maximizing regen braking in a hybrid electric vehicle (HEV) is one of the key features for increasing fuel economy. However, it is known [1] that maximizing regen braking by braking the rear axle on a low friction surface results in compromising vehicle stability even in a vehicle which is equipped with an ESP (Enhanced Stability Program). In this paper, we develop a strategy to maximize regen braking without compromising vehicle stability. A yaw rate stability control system is designed for a hybrid electric vehicle with electric rear axle drive (ERAD) and a “hang on” center coupling device which can couple the front and rear axles for AWD capabilities. Nonlinear models of the ERAD drivetrain and vehicle are presented using bond graphs while a high fidelity model of the center coupling device is used for simulation.
Technical Paper

All Wheel Independent Torque Control

1988-08-01
881135
A torque control policy for four-wheel drive road-going vehicles is developed, based on the use of a compact variable ratio unit (VRU) located at each wheel. Since the appropriate hardware is not yet available, a computer model is developed to examine what gear ratio range and frequency response might be required of the hardware to allow for improved performance and stability over current four-wheel drive systems. A comparison is then made to a front-wheel drive (FWD), rear-wheel drive (RWD) and four-wheel drive (4WD) to determine the effectiveness of the derived control policy.
Journal Article

An Investigation Into New ABS Control Strategies

2016-04-05
2016-01-1639
An investigation into two new control strategies for the vehicle Anti-lock Braking System (ABS) are made for a possible replacement of current non-optimal slip control methods. This paper applies two techniques in order to maximize the braking force without any wheel locking. The first considers the power dissipated by the brake actuator. This power method does not use slip to construct its reference signal for control. A heuristic approach is taken with this algorithm where one searches for the maximum power dissipated. This can open up easier implementation of regenerative braking concurrently with ABS on an electro-hydraulic braking system. Parameter scheduling is explored in this algorithm. The second algorithm employs the use of perturbation based Extremum Seeking Control (ESC) to provide a reference slip and a Youla controller in a negative feedback loop.
Technical Paper

Application of the Oppenheim Correlation (OPC) for Evaluation of Heat Losses from Combustion in IC-Engine

2000-03-06
2000-01-0202
The Oppenheim Correlation (OPC) is a new empirical algorithm, which allows a simple estimate of heat losses to the wall during the combustion in IC-engine. In present paper the results of different applications of OPC will be shown. Even if there are still several needs and ideas for further research it can be stated, that the OPC is a promising possibility of modeling the wall heat losses and due to its simplicity it has to be recommended to the engine community. The OPC can be used not only for didactics purposes, but also for quick simulation of wall heat losses and eventually for the on-line regulation of the cooling system.
Technical Paper

Automobile Head-On Collisions - - series II

1959-01-01
590032
AN ENGINEERING evaluation of six automobile head-on collision experiments is presented for impact speeds ranging from 21 to 52 mph. An analysis of the relative collision performances of unit-body and frame-type construction is made. Anthropometric dummy subjects facilitate determination of force systems for restrained and unrestrained motorists, their dynamic and kinetic responses to impact, and the causative factors associated with motorist injury production.* The systems of instrumentation which enabled a comprehensive analysis to be made from an event lasting only 0.25 sec are briefly presented.
Journal Article

Deep Learning-Based Queue-Aware Eco-Approach and Departure System for Plug-In Hybrid Electric Buses at Signalized Intersections: A Simulation Study

2020-04-14
2020-01-0584
Eco-Approach and Departure (EAD) has been considered as a promising eco-driving strategy for vehicles traveling in an urban environment, where information such as signal phase and timing (SPaT) and geometric intersection description is well utilized to guide vehicles passing through intersections in the most energy-efficient manner. Previous studies formulated the optimal trajectory planning problem as finding the shortest path on a graphical model. While this method is effective in terms of energy saving, its computation efficiency can be further enhanced by adopting machine learning techniques. In this paper, we propose an innovative deep learning-based queue-aware eco-approach and departure (DLQ-EAD) system for a plug-in hybrid electric bus (PHEB), which is able to provide an online optimal trajectory for the vehicle considering both the downstream traffic condition (i.e. traffic lights, queues) and the vehicle powertrain efficiency.
Technical Paper

Easily Verifiable Adaptive Sliding Mode Controller Design with Application to Automotive Engines

2016-04-05
2016-01-0629
Verification and validation (V&V) are essential stages in the design cycle of industrial controllers to remove the gap between the designed and implemented controller. In this study, a model-based adaptive methodology is proposed to enable easily verifiable controller design based on the formulation of a sliding mode controller (SMC). The proposed adaptive SMC improves the controller robustness against major implementation imprecisions including sampling and quantization. The application of the proposed technique is demonstrated on the engine cold start emission control problem in a mid-size passenger car. The cold start controller is first designed in a single-input single-output (SISO) structure with three separate sliding surfaces, and then is redesigned based on a multiinput multi-output (MIMO) SMC design technique using nonlinear balanced realization.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
Technical Paper

Engineering Requirements that Address Real World Hazards from Using High-Definition Maps, GNSS, and Weather Sensors in Autonomous Vehicles

2024-04-09
2024-01-2044
Evaluating real-world hazards associated with perception subsystems is critical in enhancing the performance of autonomous vehicles. The reliability of autonomous vehicles perception subsystems are paramount for safe and efficient operation. While current studies employ different metrics to evaluate perception subsystem failures in autonomous vehicles, there still exists a gap in the development and emphasis on engineering requirements. To address this gap, this study proposes the establishment of engineering requirements that specifically target real-world hazards and resilience factors important to AV operation, using High-Definition Maps, Global Navigation Satellite System, and weather sensors. The findings include the need for engineering requirements to establish clear criteria for a high-definition maps functionality in the presence of erroneous perception subsystem inputs which enhances the overall safety and reliability of the autonomous vehicles.
Journal Article

Fuel-Dithering Optimization of Efficiency of TWC on Natural Gas IC Engine

2015-04-14
2015-01-1043
Steady-state, transient and dithering characteristics of emission conversion efficiencies of three-way catalysts on natural gas IC engine were investigated experimentally on a single-cylinder CFR engine test bench. Steady-state runs were conducted as references for specific engine emission levels and corresponding catalyst capacities. The steady-state data showed that conversion of HC will be the major problem since conversion of HC was effective only for a very narrow range of exhaust mixture. Unsteady exploration runs with both lean-to-rich and rich-to-lean transitions were conducted. These results were interpreted with a time scale analysis, according to which a qualitative oxygen storage model was proposed featuring the difference between oxygen absorption and desorption rates on the palladium catalysts.
Technical Paper

Improvement of Steering Performance Using Steering Rack Force Control

2019-04-02
2019-01-1234
Drivers continually require steering performance improvement, particularly in the area of feedback from the road. In this study, we develop a new electrically-assisted steering logic by 1) analyzing existing steering systems to determine key factors, 2) modeling an ideal steering system from which to obtain a desirable driver torque, 3) developing a rack force observer to faithfully represent road information and 4) building a feedback compensator to track the tuned torque. In general, the estimator uses the driver torque, assist torque and other steering system signals. However, the friction of the steering system is difficult to estimate accurately. At high speed, where steering feeling is very important, greater friction results in increased error. In order to solve this problem, we design two estimators generated from a vehicle model and a steering system model. The observer that uses two estimators can reflect various operating conditions by using the strengths of each method.
Technical Paper

Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency – Is Hybridization Necessary?

1999-03-01
1999-01-0530
The question of whether or not direct-hydrogen fuel cell systems in automotive applications should be used in load following or load leveled (battery hybrid) configurations is addressed. Both qualitative and quantitative analyses are performed to determine the potential strengths and weaknesses of each option. It is determined that the amount of energy that can be recovered through regenerative braking has a strong impact on the relative fuel economy of load following versus load leveled operation. Further, it is demonstrated that driving cycles with lower power requirements will show an improvement in vehicle fuel economy from hybridization while those with higher power requirements will not. Finally it is acknowledged that the practical considerations of cost and volume must also weigh heavily into the decision between the two configurations.
Technical Paper

Meeting Both ZEV and PNGV Goals with a Hybrid Electric Vehicle - An Exploration

1996-08-01
961718
This paper is written to provide information on the fuel efficiency, emissions and energy cost of vehicles ranging from a pure electric (ZEV) to gasoline hybrid vehicles with electric range varying from 30 mi (50km) to 100 mi (160km). The Federal government s PNGV and CARB s ZEV have different goals, this paper explores some possibilities for hybrid-electric vehicle designs to meet both goals with existing technologies and batteries. The SAE/CARB testing procedures for determining energy and emission performance for EV and HEV and CARB s HEV ruling for ZEV credit are also critically evaluated. This paper intends to clarify some confusion over the comparison, discussion and design of electric- hybrid- and conventional- vehicles as well.
Technical Paper

Optimal Design of Reliable Control Systems

1993-07-01
932283
In practical applications, failures in the components of the control system can lead to improper, or even unstable, operation of the control loop. These failures can be associated with the process (abrupt change in the process dynamics), the measuring and manipulating devices (sensors, actuators) or the controller itself. It is therefore desired to design control system capable of handling such events in the sense that stability is guaranteed and performance degradation is minimized. The proposed formulation of the reliable performance problem involves the simultaneous minimization of the performance index for all considered failure scenarios. Employing the fractional representation theory, the reliable performance problem is formulated as a quadratically constrained control problem. The solution to this problem is discussed in this paper and an illustrative example is presented.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Reactive Regulation of Single-Lane Vehicle-Road Interactions

2014-04-01
2014-01-0390
This paper presents a driver assistance system designed to minimize the effect of driver reaction time on lane and speed maintenance operations. Nearly-instantaneous correcting actions are provided through a hierarchical arrangement of behaviors, by avoiding the time lag associated with deliberative or planning steps found in many control algorithms. Concepts originating in the field of robotics, including artificial potential fields and behavior-based systems, are interpreted for application to automotive control, where vehicle dynamics places considerable practical constraints on implementation. Ideas found in the study of emergent behavior in nature provide continuous, non-stepwise control signals, suitable for additive corrective inputs at highway velocities. This approach is effective for a substantial subset of road automobiles operating over a variety of speeds.
Technical Paper

The Performance Effects of Edge-Based Heat Transfer on Lithium-Ion Pouch Cells Compared to Face-Based Systems

2014-04-01
2014-01-1866
Optimizing the hardware design and control strategies of thermal management systems (TMS) in battery packs using large format pouch cells is a difficult but important problem due to the limited understanding of how internal temperature distributions impact the performance and lifetime of the pack. Understanding these impacts is difficult due to the greatly varying length and time scales between the coupled phenomena, causing the need for complex and computationally expensive models. Here, an experimental investigation is performed in which a set of fixed one-dimensional temperature distributions are applied across the face of a Nickel-Cobalt-Manganese (NCM) cathode lithium ion pouch cell in order to study the performance impacts. Effects on the open circuit voltage (OCV), Ohmic resistance, bulk discharge and charge resistance and instantaneous power are investigated.
Technical Paper

Using μ Feedforward for Vehicle Stability Enhancement

2000-05-01
2000-01-1634
Vehicle stability augmentation has been refined over many years, and currently there are commercial systems that control right/left braking and throttle to create vehicles that remain controlled when road conditions are very poor. These systems typically use yaw rate and lateral acceleration in their control philosophy. The tire/road friction coefficient, μ, has a significant role in vehicle longitudinal and lateral control, and there has been associated efforts to measure or estimate the road surface condition to provide additional information for the stability augmentation system. In this paper, a differential braking control strategy using yaw rate feedback, coupled with μ feedforward is introduced for a vehicle cornering on different μ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input.
Technical Paper

Variable Dynamic Testbed Vehicle: Dynamics Analysis

1997-02-24
970560
The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles. Using a selected compact-sized automobile as a baseline, our study indicated this baseline vehicle can be controlled to emulate the lateral response characteristics (including the vehicle's understeer coefficient and the 90% lateral acceleration rise time in a J-turn maneuver) of a fleet of production vehicles, from low to high lateral acceleration conditions.
X