Refine Your Search

Topic

Author

Search Results

Journal Article

A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles

2015-04-14
2015-01-0957
Biofuels, such as ethanol and butanol, have been the subject of significant political and scientific attention, owing to concerns about climate change, global energy security, and the decline of world oil resources that is aggravated by the continuous increase in the demand for fossil fuels. This study evaluated the potential emissions impacts of different alcohol blends on a fleet of modern gasoline vehicles. Testing was conducted on a fleet of nine vehicles with different combinations of ten fuel blends over the Federal Test Procedure and Unified Cycle. The vehicles ranged in model year from 2007-2014 and included four vehicles with port fuel injection (PFI) fueling and five vehicles with direct injection (DI) fueling. The ten fuel blends included ethanol blends at concentrations of 10%, 15%, 20%, 51%, and 83% by volume and iso-butanol blends at concentrations of 16%, 24%, 32%, and 55% by volume, and an alcohol mixture giving 10% ethanol and 8% iso-butanol in the final blend.
Technical Paper

A Fuel Control Strategy that Optimizes the Efficiency of a Direct-Methanol Fuel Cell in an Automotive Application

1999-08-17
1999-01-2913
For automotive applications, it is necessary to maximize the fuel conversion efficiency of a PEM direct-methanol fuel cell (DMFC) over the broadest possible dynamic range of power. The research reported here critically examines the efficiency of the DMFC stack when operated over a broad power range. This research establishes a basis for a control strategy that simultaneously: optimizes DMFC fuel conversion efficiency versus power level, leads into a system level optimization of efficiency vs. power, and provides an operational strategy for controlling a direct-methanol fuel cell for maximum fuel efficiency from minimum to maximum power demand. First, there is an explanation of the experimental conditions used to obtain the DMFC experimental data that is reported and analyzed. Next the DMFC methanol crossover phenomenon is discussed and characterized. Then the conceptual framework for the optimization of fuel conversion efficiency is presented.
Technical Paper

A Holistic Hydraulic and Spray Model – Liquid and Vapor Phase Penetration of Fuel Sprays in DI Diesel Engines

1999-10-25
1999-01-3549
For studying the effects of injection system properties and combustion chamber conditions on the penetration lengths of both the liquid and the vapor phase of fuel injectors in Diesel engines, a holistic injection model was developed, combining hydraulic and spray modeling into one integrated simulation tool. The hydraulic system is modeled by using ISIS (Interactive Simulation of Interdisciplinary Systems), a one dimensional in–house code simulating the fuel flow through hydraulic systems. The computed outflow conditions at the nozzle exit, e.g. the dynamic flow rate and the corresponding fuel pressure, are used to link the hydraulic model to a quasi–dimensional spray model. The quasi–dimensional spray model uses semi–empirical 1D correlation functions to calculate spray angle, droplet history and droplet motion as well as penetration lengths of the liquid and the vapor phases. For incorporating droplet vaporization, a single droplet approach has been used.
Journal Article

A Robust Stability Control System for a Hybrid Electric Vehicle Equipped with Electric Rear Axle Drive

2016-04-05
2016-01-1649
Optimizing/maximizing regen braking in a hybrid electric vehicle (HEV) is one of the key features for increasing fuel economy. However, it is known [1] that maximizing regen braking by braking the rear axle on a low friction surface results in compromising vehicle stability even in a vehicle which is equipped with an ESP (Enhanced Stability Program). In this paper, we develop a strategy to maximize regen braking without compromising vehicle stability. A yaw rate stability control system is designed for a hybrid electric vehicle with electric rear axle drive (ERAD) and a “hang on” center coupling device which can couple the front and rear axles for AWD capabilities. Nonlinear models of the ERAD drivetrain and vehicle are presented using bond graphs while a high fidelity model of the center coupling device is used for simulation.
Technical Paper

All Wheel Independent Torque Control

1988-08-01
881135
A torque control policy for four-wheel drive road-going vehicles is developed, based on the use of a compact variable ratio unit (VRU) located at each wheel. Since the appropriate hardware is not yet available, a computer model is developed to examine what gear ratio range and frequency response might be required of the hardware to allow for improved performance and stability over current four-wheel drive systems. A comparison is then made to a front-wheel drive (FWD), rear-wheel drive (RWD) and four-wheel drive (4WD) to determine the effectiveness of the derived control policy.
Technical Paper

Ambient Emission Measurements from Parked Regenerations of 2007 and 2010 Diesel Particulate Filters

2014-09-30
2014-01-2353
A novel ambient dilution tunnel has been designed, tested and employed to measure the emissions from active parked regenerations of Diesel Particulate Filters (DPFs) for 2007 and 2010 certified heavy duty diesel trucks (HDDTs). The 2007 certified engine had greater regulated emissions than the 2010 certified engine. For a fully loaded 2007 DPF there was an initial period of very large mass emissions, which was then followed by very large number of small particle emissions. The Particle Size Distribution, PSD, was distributed over a large range from 10 nm to 10 μm. The parked regenerations of the 2010 DPF had a much lower initial emission pattern, but the second phase of large numbers of small particles was very similar to the 2007 DPF. The emission results during regeneration have been compared to total emissions from recent engine dynamometer testing of 2007 and 2010 DPFs, and they are much larger.
Journal Article

An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine

2011-08-30
2011-01-1812
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
Technical Paper

Application of the Oppenheim Correlation (OPC) for Evaluation of Heat Losses from Combustion in IC-Engine

2000-03-06
2000-01-0202
The Oppenheim Correlation (OPC) is a new empirical algorithm, which allows a simple estimate of heat losses to the wall during the combustion in IC-engine. In present paper the results of different applications of OPC will be shown. Even if there are still several needs and ideas for further research it can be stated, that the OPC is a promising possibility of modeling the wall heat losses and due to its simplicity it has to be recommended to the engine community. The OPC can be used not only for didactics purposes, but also for quick simulation of wall heat losses and eventually for the on-line regulation of the cooling system.
Technical Paper

Combustion Temperature, Pressure, and Products at Chemical Equilibrium

1963-01-01
630085
For the computation of the equilibrium combustion temperature and pressure of hydrocarbon fuel in air, an original set of eighteen equations is enlarged by the energy and mass balance, and the procedure is applied to the cases of constant volume and of constant pressure combustion. Examples of engine combustion, including the effects of air-fuel ratio and the effect of water injection or exhaust gas recirculation, are treated; the results of computation are presented in graphs. The procedure of transformation and coding of the equation system for the solution on an electronic computer is described.
Technical Paper

Controlled Combustion Engines (CCE)

1999-03-01
1999-01-0324
The fact that, in our times, the execution of the exothermic process of combustion (‘heat release”) remains virtually uncontrolled is astonishing. Upon an attempt to rationalize this anomaly on historical grounds, technological means to rectify this astounding state of affairs are presented. They are based on the premise that, in the course of this process, the cylinder-piston enclosure is, in effect, a full-fledged chemical reactor. The salient feature of control is then active intervention into chemical reaction by turbulent jets. Principal elements of the control system are, as in any feedback mechanism, (1) sensors, (2) actuators and (3) a governor. The object of the first is to measure the profile of pressure - the useful output of the process. The second consists of a set of turbulent jet generators for injection of fuel and its mixing with air, as well as for ignition.
Technical Paper

Critical Issues in Quantifying Hybrid Electric Vehicle Emissions and Fuel Consumption

1998-08-11
981902
Quantifying Hybrid Electric Vehicle (HEV) emissions and fuel consumption is a difficult problem for a number of different reasons: 1) HEVs can be configured in significantly different ways (e.g., series or parallel); 2) the Auxiliary Power Unit (APU) can consist of a wide variety of engines, fuel types, and sizes; and 3) the APU can be operated very differently depending on the energy management system strategy and the type of driving that is performed (e.g., city vs. highway driving). With the future increase of HEV penetration in the vehicle fleet, there is an important need for government agencies and manufacturers to determine HEV emissions and fuel consumption. In this paper, several critical issues associated with HEV emissions and fuel consumption are identified and analyzed, using a sophisticated set of HEV and emission simulation modeling tools.
Technical Paper

Determination of Suspended Exhaust PM Mass for Light-Duty Vehicles

2014-04-01
2014-01-1594
This study provides one of the first evaluations of the integrated particle size distribution (IPSD) method in comparison with the current gravimetric method for measuring particulate matter (PM) emissions from light-duty vehicles. The IPSD method combines particle size distributions with size dependent particle effective density to determine mass concentrations of suspended particles. The method allows for simultaneous determination of particle mass, particle surface area, and particle number concentrations. It will provide a greater understanding of PM mass emissions at low levels, and therefore has the potential to complement the current gravimetric method at low PM emission levels. Six vehicles, including three gasoline direct injected (GDI) vehicles, two port fuel injected (PFI) vehicles, and one diesel vehicle, were tested over the Federal Test Procedure (FTP) driving cycle on a light-duty chassis dynamometer.
Technical Paper

Development of a Carbon/Epoxy Body for a High Performance Vehicle

2003-03-03
2003-01-1195
Considerations follow [1] on the development of the carbon/epoxy body of the Lamborghini Murcièlago. Laminate lay-up and material selection for stiffness criteria are reviewed. Engineering solutions for tooling operations in order to achieve class A surface certification are analyzed. Design for environmental aging is also discussed and accelerated degradation testing methods are described. Finally, the program that lead to the adoption of hybrid adhesive bonding as sole method of joining the composite body components to the tubular steel frame is reviewed.
Technical Paper

Dynamic Stage of Combustion in a Direct Injection Methanol Fueled Engine

2002-03-04
2002-01-0998
The paper is based on the premise that the sole purpose of combustion in piston engines is to generate pressure for pushing the expansion process away from the compression process (both expressed in terms of appropriate polytropes) to create a work producing cycle. This essential process, referred to as the dynamic stage of combustion, is carved out of the cycle and its salient properties deduced from the measured pressure profile, as a solution of an inverse problem: deduction of information on an action from its outcome. An analytical technique, construed for this purpose, is first presented and, then, applied to a direct injection, spark-ignition, methanol fueled four-stroke engine.
Technical Paper

Easily Verifiable Adaptive Sliding Mode Controller Design with Application to Automotive Engines

2016-04-05
2016-01-0629
Verification and validation (V&V) are essential stages in the design cycle of industrial controllers to remove the gap between the designed and implemented controller. In this study, a model-based adaptive methodology is proposed to enable easily verifiable controller design based on the formulation of a sliding mode controller (SMC). The proposed adaptive SMC improves the controller robustness against major implementation imprecisions including sampling and quantization. The application of the proposed technique is demonstrated on the engine cold start emission control problem in a mid-size passenger car. The cold start controller is first designed in a single-input single-output (SISO) structure with three separate sliding surfaces, and then is redesigned based on a multiinput multi-output (MIMO) SMC design technique using nonlinear balanced realization.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Technical Paper

Electrooxidation Behaviour of Pt/Carbon Electrocatalyst for Phosphoric Acid Fuel Cells (PAFC)

1992-08-03
929294
The electrooxidation of carbon black, which contains Pt electrocatalyst particles, was investigated in concentrated phosphoric acid at 0.6 to 1.0V. At the high potentials, anodic dissolution of Pt is rapid, and consequently no metal is present to catalyze the corrosion of carbon at 160 °C in 98% H3PO4. On the other hand, at 0.6V anodic dissolution of Pt is negligible, and hence it is present to catalyze the corrosion of carbon. In fact, the measurements indicate that the corrosion rate is noticeable higher than that of carbon black without Pt. These results suggest the Pt particles with surface Pt-0 may serve as an intermediary which facilitates the corrosion of carbon.
Technical Paper

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

1993-08-01
931841
Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide. nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs.
Technical Paper

Emissions and Redox Activity of Biodiesel Blends Obtained from Different Feedstocks from a Heavy-Duty Vehicle Equipped with DPF/SCR Aftertreatment and a Heavy-Duty Vehicle without Control Aftertreatment

2014-04-01
2014-01-1400
The primary objective of this study was to evaluate the impact of three different biodiesel feedstocks on emissions compared to a baseline CARB ULSD with two heavy-duty trucks equipped with and without aftertreatment technologies. The biodiesels included a soybean oil methyl ester (SME), a waste cooking oil methyl ester (WCO), and a methyl ester obtained from animal fat (AFME), blended at a 50% level by volume with the CARB diesel. The vehicles were equipped with a 2010 Cummins ISX-15 engine with a selective catalytic reduction (SCR), diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF) and with a 2002 Cummins ISX-450 engine. Both vehicles were tested over the Urban Dynamometer Driving Schedule (UDDS) on a heavy-duty chassis dynamometer. For this study, nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbons (THC), methane (CH4), non-methane hydrocarbons (NMHC), and particulate matter (PM) were measured.
Technical Paper

Engine-Out Emissions Characteristics of a Light Duty Vehicle Operating on a Hydrogenated Vegetable Oil Renewable Diesel

2020-04-14
2020-01-0337
We assessed the engine-out emissions of an ultra-low sulfur diesel (ULSD) and a neat hydrogenated vegetable oil (HVO) from a light-duty diesel truck equipped with common rail direct injection. The vehicle was tested at least twice on each fuel using the LA-92 drive cycle and at steady-state conditions at 30 mph and 50 mph at different loads. Results showed reductions in the engine-out total hydrocarbon (THC), carbon monoxide (CO), nitrogen oxide (NOx), and particulate emissions with HVO. The reductions in soot mass, solid particle number, and particulate matter (PM) mass emissions with HVO were due to the absence of aromatic and polyaromatic hydrocarbon compounds, as well as sulfur species, which are known precursors of soot formation. Volumetric fuel economy, calculated based on the carbon balance method, did not show statistically significant differences between the fuels.
X