Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Discrete-Event Simulation of the NASA Fuel Production Plant on Mars

2017-09-19
2017-01-2017
The National Aeronautics and Space Administration (NASA) is preparing for a manned mission to Mars to test the sustainment of civilization on the planet Mars. This research explores the requirements and feasibility of autonomously producing fuel on Mars for a return trip back to Earth. As a part of NASA’s initiative for a manned trip to Mars, our team’s work creates and analyzes the allocation of resources necessary in deploying a fuel station on this foreign soil. Previous research has addressed concerns with a number individual components of this mission such as power required for fuel station and tools; however, the interactions between these components and the effects they would have on the overall requirements for the fuel station are still unknown to NASA. By creating a baseline discrete-event simulation model in a simulation software environment, the research team has been able to simulate the fuel production process on Mars.
Technical Paper

A Distributed Environment for Spaceports

2004-11-02
2004-01-3094
This paper describes the development of a distributed environment for spaceport simulation modeling. This distributed environment is the result of the applications of the High-Level Architecture (HLA) and integration frameworks based on software agents and XML. This distributed environment is called the Virtual Test Bed (VTB). A distributed environment is needed due to the nature of the different models needed to represent a spaceport. This paper provides two case studies: one related to the translation of a model from its native environment and the other one related to the integration of real-time weather.
Technical Paper

Simulation Optimization of the NASA Mars Fuel In-Situ Resource Utilization and Its Infrastructure

2018-10-30
2018-01-1963
The National Aeronautics and Space Administration’s (NASA) current objectives include expanding space exploration and planning a manned expedition to Mars. In order to meet the latter objective, it is imperative that humans generate their own products by harnessing space resources, a process referred to as In-Situ Resource Utilization (ISRU). ISRU will enable NASA to reduce both payload mass and mission cost by reducing the number of consumables required to be launched from Earth. The discrete-event simulation discussed focuses primarily on one ISRU system, the production of fuel for a return trip to Earth by utilizing Mar’s atmosphere and regolith. This ISRU system primarily uses autonomous rovers for exploration, excavation, processing of Mar’s regolith to produce fuel, and disposal of the processed regolith. This study explores individual rover and component requirements including rover speeds, travel distances, functional periods, charging, and maintenance times.
Technical Paper

The Distributed Simulation of Intelligent Terrain Exploration

2018-10-30
2018-01-1915
In this study we consider the coordinated exploration of an unfamiliar Martian landscape by a swarm of small autonomous rovers, called Swarmies, simulated in a distributed setting. With a sustainable program of return missions to and from Mars in mind, the goal of said exploration is to efficiently prospect the terrain for water meant to be gathered and then utilized in the production of rocket fuel. The rovers are tasked with relaying relevant data to a home base that is responsible for maintaining a mining schedule for an arbitrarily large group of rovers extracting water-rich regolith. For this reason, it is crucial that the participants maintain a wireless connection with one another and with the base throughout the entire process. We describe the architecture of our simulation which is composed of HLA-compliant components that are visualized via the Distributed Observer Network tool developed by NASA.
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
X