Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Distributed Environment for Spaceports

2004-11-02
2004-01-3094
This paper describes the development of a distributed environment for spaceport simulation modeling. This distributed environment is the result of the applications of the High-Level Architecture (HLA) and integration frameworks based on software agents and XML. This distributed environment is called the Virtual Test Bed (VTB). A distributed environment is needed due to the nature of the different models needed to represent a spaceport. This paper provides two case studies: one related to the translation of a model from its native environment and the other one related to the integration of real-time weather.
Technical Paper

Engine Knock, A Renewed Concern In Motorsports - A Literature Review

1998-11-16
983026
This paper reviews the literature which identifies the causes, consequences and cures for engine knock as it affects high performance engines. The physical events of normal and abnormal combustion are described. The observed variations in combustion phenomenon are explained through chemical kinetics. A mathematical model of combustion which can predict knock in an engine cylinder is summarized. Several mechanisms of knock induced damage are outlined. Design and operating considerations which affect an engine's propensity to knock are discussed. Terms that have become associated with combustion in general and the knocking phenomenon in particular are collected and examined
Technical Paper

Non-Constant Variance - Emission Modeling Methods for Offline Optimization and Calibration of Engine Management Systems

2003-09-16
2003-32-0010
Calibrating the engine control unit to satisfy pollutant and performance objectives can be a challenging task. Due to the large number of variables and their interactive complexities, many firms apply design of experiment methods and modeling techniques to the acquired test data. This establishes a “black box” or “gray box” simulation model that predicts power and emissions as a function of the engine parameters. An offline optimization procedure on the fitted model(s) will identify the engine control strategy that best satisfies pollutant and performance objectives. A review of the literature reveals that the General Linear Modeling method and Neural Network modeling architectures are widely used in the development of “black box” or “gray box” simulation models. While Neural Network methods are “assumption free”, the General Linear Model method is limited to those problems in which the errors, ε, are normally distributed and have constant variance, σ2.
Technical Paper

Nonlinear Electrical Simulation of High-Power Synchronous Generator System

2006-11-07
2006-01-3041
An innovative nonlinear simulation approach for high power density synchronous generator systems is developed and implemented. Due to high power density, the generator operates in nonlinear region of the magnetic circuit. Magnetic Finite Element Analysis (FEA) makes nonlinear simulation possible. Neural network technique provides nonlinear functions for system level simulation. Dynamic voltage equation provides excellent mathematical model for system level simulations. Voltage, current, and flux linkage quantities are applied in Direct-Quadrature (DQ) rotating frame. The simulated system includes main machine, exciter, rectifier bridge, bang-bang control, and PI control circuitry, forming a closed loop system. Each part is modeled and then integrated into the system model.
Technical Paper

Nonlinear Neural Network Modeling of Aircraft Synchronous Generator with High Power Density

2012-10-22
2012-01-2158
Preliminary investigations of nonlinear modeling of aircraft synchronous generators using neural networks are presented. Aircraft synchronous generators with high power density tend operate at current-levels proportional to the magnetic saturation region of the machine's material. The nonlinear model accounts for magnetic saturation of the generator, which causes the winding flux linkages and inductances to vary as a function of current. Finite element method software is used to perform a parametric sweep of direct, quadrature, and field currents to extract the respective flux linkages. This data is used to train a neural network which yields current as a function of flux linkage. The neural network is implemented in a Simulink synchronous generator model and simulation results are compared with a previously developed linear model. Results show that the nonlinear neural network model can more accurately describe the responsiveness and performance of the synchronous generator.
Technical Paper

Statistical Process Control and Design of Experiment Process Improvement Methods for the Powertrain Laboratory

2003-10-27
2003-01-3208
The application of Statistical Process Control and Design of Experiment methods in the research laboratory can lead to significant gains in the Powertrain development process. Empirical methods such as Design of Experiments, Regression, and Neural Network techniques can be applied to help researchers gain better understanding of the cause and effect relationships of emission, alternative fuel source, performance, fuel economy, and engine management system - calibration studies. The use of these empirical modeling techniques along with model based Genetic Algorithm, Gradient, or Constraint based solution search methods will help identify the “process settings” that improve fuel economy, improve performance, and reduce pollutants. Since empirical methods are fundamentally based on the acquired test data, it is vitally important that the laboratory measurements are repeatable, consistent, and void of sources of variance that have a significant effect on the acquired test data.
Journal Article

Weapon Combat Effectiveness Analytics Using Big Data and Simulations: A Literature Review

2019-03-19
2019-01-1365
The Weapon Combat Effectiveness (WCE) analytics is very expensive, time-consuming, and dangerous in the real world because we have to create data from the real operations with a lot of people and weapons in the actual environment. The Modeling and Simulation (M&S) of many techniques are used for overcoming these limitations. Although the era of big data has emerged and achieved a great deal of success in a variety of fields, most of WCE research using the Defense Modeling and Simulation (DM&S) techniques studied have considered a lot of assumptions and limited scenarios without the help of big data technologies. Furthermore, WCE analytics using previous methodologies cannot help but get the bias results. This paper reviews and combines the basic knowledge for the new WCE analytics methodology using big data and M&S to overcome these problems of bias. Then this paper reviews the general overview of WCE, DM&S, and big data.
X