Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Spur Gear Response under Non-Ideal Loading Conditions

2009-04-20
2009-01-1258
The current practice of gear design is based on the Lewis bending and Hertzian contact models. The former provides the maximum stress on the gear base, while the latter calculates pressure at the contact point between gear and pinion. Both calculations are obtained at the reference configuration and ideal condition; i.e., zero tolerances. The first purpose of this paper is to compare these two analytical models with the numerical results, in particular, using finite element analysis. It turns out that the estimations from the two analytical equations are closely matched with that from the numerical analysis. The numerical analysis also estimates the variation of contact pressure and bending stress according to the change in the relative position between gear and pinion. It has been shown that both the maximum bending stress and contact pressure occur at non-reference configuration, which should be considered in the calculation of safety factor.
Technical Paper

A Discrete-Event Simulation of the NASA Fuel Production Plant on Mars

2017-09-19
2017-01-2017
The National Aeronautics and Space Administration (NASA) is preparing for a manned mission to Mars to test the sustainment of civilization on the planet Mars. This research explores the requirements and feasibility of autonomously producing fuel on Mars for a return trip back to Earth. As a part of NASA’s initiative for a manned trip to Mars, our team’s work creates and analyzes the allocation of resources necessary in deploying a fuel station on this foreign soil. Previous research has addressed concerns with a number individual components of this mission such as power required for fuel station and tools; however, the interactions between these components and the effects they would have on the overall requirements for the fuel station are still unknown to NASA. By creating a baseline discrete-event simulation model in a simulation software environment, the research team has been able to simulate the fuel production process on Mars.
Technical Paper

A Distributed Environment for Spaceports

2004-11-02
2004-01-3094
This paper describes the development of a distributed environment for spaceport simulation modeling. This distributed environment is the result of the applications of the High-Level Architecture (HLA) and integration frameworks based on software agents and XML. This distributed environment is called the Virtual Test Bed (VTB). A distributed environment is needed due to the nature of the different models needed to represent a spaceport. This paper provides two case studies: one related to the translation of a model from its native environment and the other one related to the integration of real-time weather.
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

2017-09-19
2017-01-2022
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
Technical Paper

A Heat Pipe Assisted Air-Cooled Rotary Wankel Engine for Improved Durability, Power and Efficiency

2014-09-16
2014-01-2160
In this paper, we address the thermal management issues which limit the lifespan, specific power and overall efficiency of an air-cooled rotary Wankel engine used in Unmanned Air Vehicles (UAVs). Our goal is to eliminate the hot spots and reduce the temperature gradients in the engine housing and side plates by aggressive heat spreading using heat pipes. We demonstrate by simulation that, for a specific power requirement, with heat spreading and more effective heat dissipation, thermal stress and distortion can be significantly reduced, even with air cooling. The maximum temperature drop was substantial, from 231°C to 129°C. The temperature difference (measure of temperature uniformity) decreased by 8.8 times (from 159°C to 18°C) for a typical UAV engine. Our heat spreaders would not change the frontal area of the engine and should have a negligible impact on the installed weight of the propulsion assembly.
Journal Article

An Architecture for Monitoring and Anomaly Detection for Space Systems

2013-09-17
2013-01-2090
Complex aerospace engineering systems require innovative methods for performance monitoring and anomaly detection. The interface of a real-time data stream to a system for analysis, pattern recognition, and anomaly detection can require distributed system architectures and sophisticated custom programming. This paper presents a case study of a simplified interface between Programmable Logic Controller (PLC) real-time data output, signal processing, cloud computing, and tablet systems. The discussed approach consists of three parts: First, the connectivity of real-time data from PLCs to the signal processing algorithms, using standard communication technologies. Second, the interface of legacy routines, such as NASA's Inductive Monitoring System (IMS), with a hybrid signal processing system. Third, the connectivity and interaction of the signal processing system with a wireless and distributed tablet, (iPhone/iPad) in a hybrid system configuration using cloud computing.
Technical Paper

Effect of Catalyst Support on the Photocatalytic Destruction of VOCs in a Packed-Bed Reactor

2007-07-09
2007-01-3138
The removal of volatile organic compounds (VOCs) from the air aboard spacecrafts is necessary to maintain the health of crewmembers. The use of photocatalysis has proven effective for the removal of VOCs. A majority of studies have focused on thin films, which have a low adsorption capacity for contaminants and intermediate oxidation byproducts. Thus, this study investigates the use of adsorbent materials impregnated or coated with titania to: (1) provide a system that can remove VOCs for a period of time in the absence of UV irradiation to reduce power requirements and/or offer contaminant removal in the event of lamp failure and (2) improve the photocatalytic oxidation efficiency by concentrating VOCs and intermediate oxidation byproducts near the surface of the photocatalyst. Two adsorbent materials (porous silica gel and BioNuchar120 activated carbon) and glass beads were tested as catalyst supports for the destruction of a target VOC, in this case methanol (Co = 50 ppmv).
Technical Paper

Effect of Inventory Storage on Automotive Flooded Lead-Acid Batteries

2019-09-20
2019-01-5081
The battery is a central part of the vehicle’s electrical system and has to undergo cycling in a wide variety of conditions while providing an acceptable service life. Within a typical distribution chain, automotive lead-acid batteries can sit in storage for months before delivery to the consumer. During storage, batteries are subjected to a wide variety of temperature profiles depending on facility-specific characteristics. Additionally, batteries typically do not receive any type of maintenance charge before delivery. Effects of storage time, temperature, and maintenance charging are explored. Flooded lead-acid batteries were examined immediately after storage and after installation in vehicles subjected to normal drive patterns. While phase composition is a major consideration, additional differences in positive active material (PAM) were observed with respect to storage parameters.
Technical Paper

Effects of High Productivity Machining on Ti-6Al-4V Surface Topography

2004-09-21
2004-01-2827
Surface defects were demonstrated to result from high productivity machining (HPM) as well as conventional machining of a titanium alloy Ti-6Al-4V, with HPM causing the larger sized defects. These defects could act as initiation sites for fatigue cracks showing that machining would affect fatigue strength and life of the part produced. A finishing pass appears to remove the defects. Better understanding is needed of the relationships between machining, surfaces, and strength.
Technical Paper

Enabling Much Higher Power Densities in Aerospace Power Electronics with High Temperature Evaporative Spray Cooling

2008-11-11
2008-01-2919
A power electronics module was equipped with an evaporative spray cooling nozzle assembly that served to remove waste heat from the silicon devices. The spray cooling nozzle assembly took the place of the standard heat sink, which uses single phase convection. The purpose of this work was to test the ability of spray cooling to enable higher power density in power electronics with high temperature coolant, and to be an effective and lightweight system level solution to the thermal management needs of aerospace vehicles. The spray cooling work done here was with 95 °C water, and this data is compared to 100 °C water/ propylene glycol spray cooling data from a previous paper so as to compare the spray cooling performance of a single component liquid to that of a binary liquid such as WPG. The module used during this work was a COTS module manufactured by Semikron, Inc., with a maximum DC power input of 180 kW (450 VDC and 400 A).
Technical Paper

High Speed Machining of Helicopter Gearcases

2004-09-21
2004-01-2826
High speed machining of aluminum and magnesium helicopter gearcases was experimentally demonstrated to be five times more productive than contemporary conventional commercial practice for suitable operations. Appropriate techniques and performance characteristics are discussed for face milling, endmilling and planetary milling operations. Potential problem areas, such as surface characteristics and machine tool performance requirements are discussed.
Technical Paper

Low Pressure Greenhouse Concepts for Mars: Atmospheric Composition

2002-07-15
2002-01-2392
The main principles of artificial atmospheric design for a Martian Greenhouse (MG) are described based on: 1. Cost-effective approach to MG realization; 2. Using in situ resources (e.g. CO2, O2, water); 3. Controlled greenhouse gas exchange by using independent pump in and pump out technologies. We show by mathematical modeling and numerical estimates based on reasonable assumptions that this approach for Martian deployable greenhouse (DG) implementation could be viable. A scenario of MG realization (in terms of plant biomass/photosynthesis, atmospheric composition, and time) is developed. A list is given of technologies (natural water collection, MG inflation, oxygen collection and storage, etc.) that are used in the design. The conclusions we reached are: 1. Initial stocks of oxygen and water probably would be required to initiate plant germination and growth; 2. Active control of MG ventilation could provide proper atmospheric composition for each period of plant growth; 3.
Technical Paper

Monitoring and Control for Artificial Climate Design

2002-07-15
2002-01-2286
The monitoring and control of an artificial climate is necessitated by the Mars Dome Project (MDP) [ref 1]. MDP is designed to grow plants in an enclosed structure under reduced pressure. This system includes a dome enclosure, an environmental control system, a plant growth system, a data logging system, and an external vacuum vessel [ref 2]. Each of these systems is integrated by the use of a solid-state control device located inside the base of the Atmospheric Tower Management System (ATMS). Details of the controller follow a short summary of the major components of the MDP.
Technical Paper

Performance Characteristics of MOSFETs Operating at High Power

2000-10-31
2000-01-3622
This paper demonstrates that the on-resistance of a power MOSFET decreases significantly when the operating temperature decreases. The decrease in on-resistance under cryogenic temperature allows the device to operate at a much higher power and current condition. Also, it is demonstrated that the MOSFET device can be effectively kept at cryogenic temperature by spray cooling with liquid nitrogen. Over 80 W of heat generated can be removed continuously with spray cooling.
Technical Paper

Post-Treatment of Anaerobically Digested Solid Waste in Long Term Space Missions

2006-07-17
2006-01-2258
Post-treatment of anaerobically digested residue produced during long term space missions was investigated. Solid waste was anaerobically digested by employing the SEBAC system. One of the goals of post-treatment step is to convert ammonia in the residue to nitrates via biological nitrification processes. It was found that anaerobically digested residue contained nitrifying microorganisms which could be activated by aeration. Without supplying any external nitrifying inoculum, nitrification was initiated within 2 days by continuously blowing air at 15 ml/min. The maximum rate was 0.78 mg /g dry weight /day. However, denitrification process occurred soon after nitrification and ∼ 50% of nitrate was denitrified. A modified system in which aeration was carried out by holding air within the reactor at a pressure of ∼ 10 psi yielded a higher initial specific nitrification rate of 1.7 mg/g dry weight/day. Moreover, nitrification was initiated within a day.
Journal Article

Predictive Molding of Precision Glass Optics

2009-04-20
2009-01-1199
Precision glass molding process is an attractive approach to manufacture small precision optical lenses in large volume over traditional manufacturing techniques because of its advantages such as low cost, fast time to market and being environment friendly. In this paper, we present a physics-based computational tool that predicts the final geometry of the glass element after molding process using the finite element method. Deformations of both glass and molds are considered at three different stages: heating, molding, and cooling. A 2D axisymmetric finite element model is developed to model the glass molding process. The proposed modeling technique is more efficient than the all-in-one modeling technique. The molds are assumed to be rigid, except for thermal expansion, at all time and glass treated as a flexible body during the compression. Details on identifying material parameters, modeling assumptions, and simplifications are discussed.
Technical Paper

Statistical Process Control and Design of Experiment Process Improvement Methods for the Powertrain Laboratory

2003-10-27
2003-01-3208
The application of Statistical Process Control and Design of Experiment methods in the research laboratory can lead to significant gains in the Powertrain development process. Empirical methods such as Design of Experiments, Regression, and Neural Network techniques can be applied to help researchers gain better understanding of the cause and effect relationships of emission, alternative fuel source, performance, fuel economy, and engine management system - calibration studies. The use of these empirical modeling techniques along with model based Genetic Algorithm, Gradient, or Constraint based solution search methods will help identify the “process settings” that improve fuel economy, improve performance, and reduce pollutants. Since empirical methods are fundamentally based on the acquired test data, it is vitally important that the laboratory measurements are repeatable, consistent, and void of sources of variance that have a significant effect on the acquired test data.
Technical Paper

Stiffness of Structures and Drives in Fast Milling Machines

1999-06-05
1999-01-2273
A stiffness requirement for high speed milling machines is determined by examining the stiffness of current generation high speed spindles. The desire for stability against chatter dictates that the stiffness of the machine structure and drives, when reflected to the tool tip exceed the spindle/tool holder/tool stiffness. The stiffness characteristics of a classical serial machine tool designed expressly for high speed milling are shown. Another potential design for high speed machining applications, the parallel kinematic or hexapod structure is also examined. It is found that hexapod structures exhibit lower structural stiffness than can be achieved in serial machines when using the same drive components. Furthermore, the stiffness of the hexapod structure varies widely across the workspace, leading to difficulties in control and limiting the achievable accuracy.
Technical Paper

Stitching The Digital Thread, Creating The Product Digital Quilt

2023-03-07
2023-01-1016
The making of a quilt is an interesting process. Historically, a quilt is a canvas of work made from old pieces of cloth cut into squares or whatever shape that make a nice connected pattern and then stitched together. The quilt could be random pieces that is not related to each other. In most recent years and more common cases, a quilt is made of different pieces of patches that are connected and laid out in a special way to tell a story. Not only does it portray a story that is put together in a certain sequence, but it also stiches the pieces of the quilt into a nice and complete narrative. A story that one can understand just by looking at the quilt spread and unfolded. Much like the making of a quilt that has a story to tell, a Product Digital Quilt will tell the story of a product. The Digital Product Quilt replaces the conventional way of telling a product story. The traditional product story is a method that is serially connecting multiple product life cycle silos together.
Technical Paper

Study on Metal Sheet Ductile Fracture using Square Punch Test

2018-04-03
2018-01-0808
This study introduces a new practical calibration approach of ductile fracture models by performing square punch tests on metal sheets. During square punch tests, ductile fracture occurs at either the corner of die or punch radius when applying different clamping loads and lubrication conditions. At the corner of die radius, in-plane pure shear is induced at the intersection between the side-walls and the flange by combined tension and compression. On the other hand, the material at the corner of the punch radius is under combined bending and biaxial tension. The material studied in this paper is advanced high strength steel (AHSS) DP780 from ArcelorMittal. Isotropic J2 plasticity model with mixed Swift-Voce hardening rule is calibrated from uniaxial tensile tests.
X