Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray

2007-07-23
2007-01-1890
Experimental study has been carried out on the effects of the micro-hole nozzle injector and ultra-high injection pressure on the mixture properties of D.I. Diesel engine. A manually operated piston screw pump, High Pressure Generator, was used to obtain ultra-high injection pressures. Three kinds of injection pressures, 100MPa, 200MPa, and 300MPa, were applied to a specially designed injector. Four kinds of nozzle hole diameters, 0.16mm, 0.14mm, 0.10mm, and 0.08mm, were adopted in this study. The laser absorption-scattering (LAS) technique was used to analyze the equivalence ratio distributions, Sauter mean diameter, spray tip penetration length, and other spray characteristics. The analyses of the experimental results show that the micro-hole nozzle and ultra-high injection pressure are effective to increase the turbulent mixing rate and to form the uniform and lean fuel-air mixture.
Journal Article

Small Injection Amount Fuel Spray Characteristics Injected by Hole-Type Nozzle for D.I. Diesel Engine

2014-11-11
2014-32-0124
Spray characteristics under very small injection amount injected by the hole-type nozzle for a D.I. Diesel engine were investigated using the spray test rig consisting a high-pressure and high-temperature constant volume vessel with optical accesses and a common rail injection system. The Laser Absorption Scattering (LAS) technique was used to visualize the liquid and vapor phase distributions in the evaporating spray. In the very small injection amount condition of the evaporating and free (no wall impingement) spray, the both spray tip penetration and spray angle are larger than those of the non-evaporating free spray. This tendency contradicts the previous observation of the diesel spray with large injection amount and the quasi steady state momentum theory. In the case of the spray impinging on a 2-dimensional piston cavity wall, the spray tip penetration of the evaporating spray is larger than that of the non-evaporating spray.
X