Refine Your Search

Topic

Search Results

Technical Paper

A Fatigue Life Prediction Method for Tensile-Shear Spot Welds

1985-02-01
850370
An empirical Three Stage Initiation-Propagation (TSIP) model has been developed which predicts the fatigue resistance of tensile-shear spot welds under constant amplitude loading. The improvements of tensile-shear spot weld fatigue resistance caused by changes in weld geometry, residual stresses and material properties variables are discussed with the aid of the model. The TSIP model suggests that, in addition to the influence of geometry, residual stresses at the site of crack initiation greatly influence the fatigue resistance of tensile-shear spot welds. The TSIP model predicts that material properties play a subtle role in determining the fatigue resistance of tensile-shear spot welds.
Technical Paper

A Field Information System for SSCM

1993-09-01
932422
Site-Specific Crop Management (SSCM) involves use of automated seeders and chemical applicators to make spatially-variable applications to agricultural fields. Soil productivity is spatially variable and thus, SSCM provides an opportunity to reduce total applications of seed and fertilizer without reducing crop yields. Also, more complete crop use of fertilizers with SSCM could reduce the potential for environmental contamination. A key element in SSCM is a Field Information System (FIS) for preparing application maps to control application rates.
Technical Paper

An Empirical Method for Estimating the Fatigue Resistance of Tensile-Shear Spot Welds

1983-02-01
830035
An empirical method which is based principally on estimates of the fatigue crack initiation life (NI) has been developed which predicts the fatigue resistance of tensile-shear spot welds in the long life regime. The method uses Basquin’s law and Peterson’s equation to estimate NI and thus is founded on the fatigue behavior of smooth specimens and modelling of the fatigue notch size effect. The fatigue notch factor (Kf) required in this analysis was obtained from Pook’s relationships for the stress intensity factors of tensile-shear spot welds. Estimates of NI are added to estimates of the fatigue crack propagation life NP to obtain the total fatigue life (NT) but in the long life regime NP can usually be neglected. The improvement of tensile-shear spot weld fatigue resistance through manipulation of geometry and material property variables are discussed with the aid of the model.
Technical Paper

An Experimental and Analytical Study of the Fatigue Life of Weldments with Longitudinal Attachments

2001-03-05
2001-01-0085
Both the experimental results and the analytical predictions of this study confirm that the poor fatigue performance of weldments with longitudinal attachments is due to poor weld quality which in turn leads to either a cold-lap or a very small weld toe radius. as well as to the combination of a very high 3-D stress concentration, and very high tensile residual stresses. Consequently, a specially designed stress-concentration-reducing part termed “stress diffuser” incorporated in the wrap-around welds at the ends of the longitudinal attachments increased the fatigue strength of longitudinal attachments to equal that of transverse attachments but only when cold-laps were eliminated. The fatigue life predictions made using the a two-stage Initiation-Propagation (IP) Model were in good agreement with the experimental results. Procedures for correcting for the curved shape of the crack path are investigated.
Technical Paper

Analysis of Residual Stresses and Cyclic Deformation for Induction Hardened Components

1995-02-01
950707
Induction hardening of mild steel components often results in significant improvements in the static and cyclic load capability, with comparatively small increases in cost. Members subjected primarily to torsional loading are a relevant subset of the broad range of induction hardened components. Due to the variation of material properties and residual stresses, failures are “initiated” at the traditional geometric locations predicted for homogeneous materials and also at subsurface sites. The introduction of shear based fatigue parameters has necessitated the consideration of the residual stress as a three dimensional quantity, especially when analyzing subsurface failures. Not considering the tensoral nature of the residual stress can lead to serious errors when estimating fatigue life, and for larger magnitude loadings, the residual stress field may relax.
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

1997-04-08
971535
Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
Technical Paper

Cavitating Flow within an Injector-Like Geometry and the Subsequent Spray

2019-04-02
2019-01-0284
Cavitation plays a significant role in the spray characteristics and the subsequent mixing and combustion process in engines. Cavitation has beneficial effects on the development of the fuel sprays by improving injection velocity and promoting primary break-up. On the other hand, intense pressure peaks induced by the vapor collapse may lead to erosion damage and severe degradation of the injector performance. In the present paper, the transient cavitating flow in the injector-like geometry was investigated using the modified turbulence model and cavitation criterion. A local density correction was used in the Reynolds-averaged Navier-Stokes turbulence model to reduce the turbulent viscosity, which facilitates the cavitation development. The turbulent stress was also considered in the cavitation inception stage. The modified model is capable of reproducing the cavitating flow with an affordable computational cost.
Technical Paper

Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine using Well-Defined Fuel Properties

2007-04-16
2007-01-0617
Biodiesel fuel can be produced from a wide range of source materials that affect the properties of the fuel. The diesel engine has become a highly tuned power source that is sensitive to these properties. The objectives of this research were to measure and predict the key properties of biodiesel produced from a broad range of source materials to be used as inputs for combustion modeling; and second to compare the results of the model with and without the biodiesel fuel definition. Substantial differences in viscosity, surface tension, density and thermal conductivity were obtained relative to reference diesel fuels and among the different source materials. The combustion model revealed differences in the temperature and emissions of biodiesel when compared to reference diesel fuel.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

2005-04-11
2005-01-0209
A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Development and Validation of a Model for Predicting Hand Prehensile Movements

2006-07-04
2006-01-2329
A prediction model for hand prehensile movements was developed and validated. The model is based on a new approach that blends forward dynamics and a simple parametric control scheme. In the development phase, model parameters were first estimated using a set of hand grasping movement data, and then statistically analyzed. In the validation phase, the model was applied to novel conditions created by varying the subject group and size of the object grasped. The model performance was evaluated by the prediction errors under various novel conditions as compared to the benchmark values with no extrapolation. Analyses of the model parameters led to insights into human movement production and control. The resulting model also offers computational simplicity and efficiency, a much desired attribute for digital applications.
Technical Paper

Experimental Investigation of Tripod Constant Velocity (CV) Joint Friction

2006-04-03
2006-01-0582
Constant Velocity (CV) joints are an integral part of modern vehicles, significantly affecting steering, suspension, and vehicle vibration comfort levels. Each driveshaft comprises of two types of CV joints, namely fixed and plunging types connected via a shaft. The main friction challenges in such CV joints are concerned with plunging CV joints as their function is to compensate for the length changes due to steering motion, wheel bouncing and engine movement. Although CV joints are common in vehicles, there are aspects of their internal friction and contact dynamics that are not fully understood or modeled. Current research works on modeling CV joint effects on vehicle performance assume constant empirical friction coefficient values. Such models, however are not always accurate, especially under dynamic conditions which is the case for CV tripod joints.
Technical Paper

High Temperature Cyclic Fatigue Damage Modeling of Alumina

1994-03-01
940251
Cyclic loading is not as damaging as static loading of ceramics at high temperatures. Microcrack growth retardation has been established as a mechanism for increasing the durability of ceramics at high temperatures. A combined experimental and theoretical approach provides a mechanistic understanding of the deformation and failure processes in ceramic materials at high temperatures. Results demonstrate that the high temperature behavior of some ceramic material systems are controlled by the behavior of the grain boundary phase whose response is considerably different under static and cyclic loading.
Technical Paper

Iced-Airfoil and Wing Aerodynamics

2003-06-16
2003-01-2098
Past research on airfoil and wing aerodynamics in icing are reviewed. This review emphasizes the periods after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This section identifies four classes of ice accretions: roughness, rime ice, horn ice, and spanwise ridge ice. In these sections the key flowfield features such as flowfield separation and reattachment are reviewed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are briefly summarized.
Technical Paper

Methods for Detection of Lubrication Failure Applied to a Swashplate Compressor

2000-03-06
2000-01-0974
Understanding lubrication failures at the shoe/swashplate contact of automotive swashplate compressors will greatly enhance the reliability of the air conditioning system. Maintaining proper lubrication is not always possible during transient conditions. Therefore, a method for detection of lubricant loss is of great interest to the automotive industry. Three methods for detecting lubrication loss were examined: contact resistance, acoustic emission, and dynamic pressure oscillations. A mobile air conditioning test stand capable of recording many system parameters was used. Oil return to the compressor was monitored using an oil separator and a refrigerant/oil concentration sensor. Data were taken during steady oil return rates and after oil shut off. The electrical contact resistance between the shoe and swashplate was used to indicate changes in the lubrication conditions at this critical interface. Measurements were taken at two oil return rates during steady oil return tests.
Technical Paper

Model to Predict Hydraulic Pump Requirements for an Off-Road Vehicle

1990-09-01
901622
This paper describes and discusses a computer model that can be used to predict the hydraulic pump requirements of an excavator necessary to meet the specified productivity levels for a given set of design conditions. The model predicts the hydraulic cylinder flow rates, pressures, and power necessary to sustain a given work cycle. The study compares the results from a simulation of the excavator with actual test data obtained from a test vehicle taken during a typical work cycle.
Technical Paper

Optimization of Inlet Port Design in a Uniflow-Scavenged Engine Using a 3-D Turbulent Flow Code

1993-04-01
931181
The finite volume, three-dimensional, turbulent flow code ARIS-3D is applied to the study of the complex flow field through the inlet port and within the cylinder of a uniflow-scavenged engine. The multiblock domain decomposition technique is used to accommodate this complex geometry. In this technique, the domain is decomposed into two blocks, one block being the cylinder and the other being the inlet duct. The effects of inlet duct length, geometric port swirl angle, and number of ports on swirl generating capability are explored. Trade-offs between swirl level and inherent pressure drop can thus be identified, and inlet port design can be optimized.
Technical Paper

Performance of Alcohol Blends in Diesel Engines

1981-04-01
810681
A normally aspirated, four-stroke diesel engine was tested under operation with two alcohol containing fuel blends. The fuels contained ethanol, butanol, heavy virgin distillate, diesel Nos. 2 and 4, and a cetane improver. The proportions of the components were selected to give blends with properties within the range of diesel No. 2. The final blends contained 25 and 43.7 percent alchohols. Test results showed a loss in power due to the reduced heating value of the blends, and some deterioration of performance at light loads. At intermediate to heavy loads, satisfactory performance was obtained.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

The Effect of In-Cylinder Temperature on the Ignition Initiation Location of a Pre-Chamber Generated Hot Turbulent Jet

2018-04-03
2018-01-0184
Ignition location is one of the important factors that affect the thermal efficiency, exhaust emissions and knock sensitivity in premixed-charge ignition engines. However, the ignition initiation locations of pre-chamber generated turbulent jet ignition, which is a promising ignition enhancement method, are not clearly understood due to the complex physics behind it. Motivated by this, the ignition initiation location of a transient turbulent jet in a constant volume combustor is analyzed by the use of computational fluid dynamics (CFD) simulations. In the CFD simulations of this work, commercial codes KIVA-3 V release 2 and an in-house-developed chemical solver with a detailed mechanism for H2/air mixtures are used. Comparisons are performed between simulated and experimental ignition initiation locations, and they agree well with one another. A detailed parametric study of the influence of in-cylinder temperature on the ignition initiation location is also performed.
Technical Paper

The Effect of Large Droplet and Spanwise Ridge Ice Accretion on the Aerodynamic Performance of Swept Wings

2023-06-15
2023-01-1385
Wind tunnel tests were performed on an 8.9-percent scale semispan wing in the Wichita State University 7x10-foot wind tunnel with simulated ice accretion shapes. Simulated ice shapes from large-droplet clouds, simple-geometry ice horn shapes, and simple-geometry spanwise ridge shapes typical of runback icing were tested. Three Reynolds number and Mach number combinations were tested over a range of angles of attack. Aerodynamic forces and moments were acquired from the tunnel balance and surface pressures and oil flow visualizations were acquired. This research supplements the Swept Wing Icing Program recently concluded by NASA, FAA, ONERA, and their partners by testing new ice shapes on the same wind tunnel model. Additional surface roughness was added to simulate large-droplet ice accretion aft of the highly three-dimensional primary ice shape, and it had little effect on the wing aerodynamic performance.
X