Refine Your Search

Topic

Author

Search Results

Technical Paper

A Case for Technology - Forcing Transformative Changes in the F1 Power Unit

2021-04-06
2021-01-0371
Formula 1 has always played a major role in technological advancements within the automotive and motorsport sectors. The adaptive changes introduced for the Power Unit (PU) in 2014 forced constructors, in collaboration with industry partners, to invent technologies for exceeding 50% brake thermal efficiency within a short span of time, demonstrating that technology-forcing regulations through motorsport is the favorable route to achieve transformative changes within the automotive sector. Therefore, in an attempt to address arising global warming and health concerns, the present work analytically examines the ambient air quality in track stadia during F1 race events to identify potential PU exhaust emission targets. It models the volume of air contained within the circuits located near heavily built-up areas assuming stagnant air conditions and uniform mixing.
Technical Paper

A New Simulation Approach of Estimating the Real-World Vehicle Performance

2020-04-14
2020-01-0370
Due to the variability of real traffic conditions for vehicle testing, real-world vehicle performance estimation using simulation method become vital. Especially for heavy duty vehicles (e.g. 40 t trucks), which are used for international freight transport, real-world tests are difficult, complex and expensive. Vehicle simulations use mathematical methods or commercial software, which take given driving cycles as inputs. However, the road situations in real driving are different from the driving cycles, whose speed profiles are obtained under specific conditions. In this paper, a real-world vehicle performance estimation method using simulation was proposed, also it took traffic and real road situations into consideration, which made it possible to investigate the performance of vehicles operating on any roads and traffic conditions. The proposed approach is applicable to all kind of road vehicles, e.g. trucks, buses, etc. In the method, the real-road network includes road elevation.
Technical Paper

A Theoretical and Experimental Study of the Modes of End Gas Autoignition Leading to Knock in S. I. Engines

1994-10-01
942060
A 2-D simulation of fluid dynamic and chemistry interaction following end gas autoignition has demonstrated three distinct modes of reaction, dependent upon the temperature gradient about an exothermic centre. All three modes (deflagration, developing detonation and thermal explosion) can contribute to knock; the developing detonation case, associated with intermediate temperature gradient, has been identified as the more damaging. The simulation code (LUMAD) has been used in a systematic parametric study designed to separate the complex interacting events which can lead to mixed modes in real engines. A most significant finding related to the sequential autoignition of multiple exothermic centres.
Journal Article

Aerodynamic CFD Based Optimization of Police Car Using Bezier Curves

2017-04-11
2017-01-9450
This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part.
Technical Paper

Aerodynamic Optimization of a Front Wheel Wake-Related Bodywork on a Novel Electric Formula Car Using Metaheuristic Approach

2018-08-20
2018-01-5030
Aerodynamic drag reduction is a critical part in the design of a novel electric, entry-level, formula car due to the modest energy density provided by the contemporary Lithium-ion battery cells. In order to improve track performance, aerodynamic development must focus on components which do not generate a considerable amount of downforce. Rotating front wheels are identified as the least aerodynamic part of the race car, since it is responsible for the third of the overall drag forces and producing moderate amounts of lift. In the present study, a parameterized wheel pod geometry is used to improve the overall aerodynamic performance of an open-wheel race car. The model is driven by seven parameters, which entails huge flexibility of the bodywork design. First, an unsteady Computational Fluid Dynamics (CFD) simulation was developed and validated to visualize the oscillating flow behavior and obtain averaged surface force measurements.
Technical Paper

Analysis of Energy Recovery System of Formula One Cars

2021-04-06
2021-01-0368
This study analyzes the performance of the Energy Recovery System (ERS) of a Formula One car (F1) based on the qualification performance of 19 drivers for the first calendar race of the 2019 FIA Formula One World Championship®. In this study, the race circuit analysed was split into different sectors to examine the energy transfer between the Motor Generator Unit-Kinetic (MGU-K) and the Energy Storage (ES) systems. Positive Kinetic Energy (PKE) concept was used for estimating the energy deployment potential of the ERS along with numerical simulations for estimating the energy recovering potential. This investigation highlights the strategies used by different drivers and the effect of driver to driver variation on their ERS performance during qualification. The methodology demonstrated in this study is able to identify the correlation between the unique driving style of individual drivers and the ERS strategies used by the teams for maximizing the performance of their car.
Technical Paper

Assessment of the Impact of Vehicle Emissions on Air Quality Changes during COVID-19 Lockdown in Bogota, Colombia

2022-03-29
2022-01-0583
The COVID-19 pandemic has forced governments to implement rigorous containment measures on reduction or cessation of human mobility, transportation and economic activities, to control the spread of the virus. This is considered as a unique opportunity to study the impact of local lockdowns periods, especially, on the vehicle emission levels, and urban air quality in cities with high pollution levels, such as Bogota, Colombia. The first case was confirmed in Colombia on March 6, 2020, since then to prevent its propagation, the government declared a national lockdown starting from March 20 until August 31, 2020. Therefore, this study attempted to analyse the air quality in Bogota by assessing the concentrations of the atmospheric pollutants NO₂, SO₂, O₃, CO, PM₂.₅ and PM₁₀ during the lockdown period and the corresponding concentrations levels during the same period in 2018 and 2019. The data for this pilot study was obtained from the air quality monitoring stations of Bogota.
Technical Paper

Battery Sizing, Parametric Analysis, and Powertrain Design for a Class 8 Heavy-Duty Battery Electric Truck

2023-04-11
2023-01-0524
Electrification of the transportation sector requires an energy-efficient electric powertrain supported by renewable sources of energy to limit the use of fossil fuels. However, the integration of battery electric powertrains in heavy-duty trucks seems more challenging than other types due to the high battery demand and negative impacts on the truck’s cargo capacity. In this paper, the battery sizing of a 41-tons Mercedes Actros truck is performed based on battery safety zone operating conditions. A parametric study is conducted to assess the impacts of sizing on a truck’s total cargo capacity as well as the body dynamic parameters. The numerical model of the Mercedes Actros electric powertrain is developed in AVL CRUISETM M software. The hybrid pulsed power characterization tests are performed on 3Ah lithium-ion NMC cells in the lab for fitting the second-order equivalent circuit model’s parameters used in the analysis.
Technical Paper

CFD Analysis of the Battery Thermal Management System for a Heavy-Duty Truck

2024-04-09
2024-01-2668
Li-ion batteries (LIBs) optimum performance and lifetime depend on temperature, with the commonly suggested operating temperature being in the range of 25 to 40 °C. It's also crucial to keep the temperature difference between battery cells below 5°C. Operation at different temperature ranges can adversely affect or degrade the performance and lifetime of LIBs. A battery thermal management system (BTMS) is essential for keeping the battery temperature within the optimum range. This paper aims to develop and analyze the BTMS for an electric heavy-duty truck. To achieve this aim, battery cells and modules are modelled in ANSYS Fluent software. Validation with experimental results and mesh sensitivity studies are also performed to increase confidence in simulation data. The model is then analyzed for a specific cooling systems to investigate its effect on battery thermal performance during the operation.
Technical Paper

Cepstrum Analysis of a Rate Tube Injection Measurement Device

2016-10-17
2016-01-2196
With a push to continuously develop traditional engine technology efficiencies and meet stringent emissions requirements, there is a need to improve the precision of injection rate measurement used to characterise the performance of the fuel injectors. New challenges in precisely characterising injection rate present themselves to the Original Equipment Manufacturers (OEMs), with the additional requirements to measure multiple injection strategies, increased injection pressure and rate features. One commonly used method of measurement is the rate tube injection analyser; it measures the pressure wave caused by the injection within a column of stationary fluid. In a rate tube, one of the significant sources of signal distortion is a result of the injected fluid pressure waves reflected back from the tube termination.
Technical Paper

Characterisation of Material Transformation during Cast Iron Brake Disc Bedding

2006-10-08
2006-01-3185
Cast iron brake discs are commonly used for road and race applications. The graphite flake arrangement of grey cast iron matches the high thermal conductivity requirements of brake discs, although with the brittleness characteristic of this material. Therefore the design of cast iron brake discs is a compromise between a thermally efficient design to reduce the operating temperature and a design generating a controlled tensile stress level to prevent crack failure, with as little mass penalty as possible. The most critical failure mode on competition brake discs is catastrophic crack propagation in the early stages of service life. Dynamometer testing has shown that the initial bedding process greatly reduces the likelihood of catastrophic disc failure. This fact leads to the hypothesis that a heat treatment process occurs on the discs during bedding, increasing their crack resistance.
Technical Paper

Computational Evaluation of Aerodynamic Forces on a Racing Motorcycle during High Speed Cornering

2015-03-30
2015-01-0097
This work describes the evaluation of the aerodynamic forces acting upon a road going sport motorcycle (modified for racing purposes) during a high speed, high lean angle cornering manoeuvre using commercial computational fluid dynamics software. The subject of motorcycle cornering aerodynamics is currently one not widely covered in literature. The research presented in this paper aims to provide a basis for investigations into the improvement of motorcycle cornering performance through aerodynamic modifications. Results were obtained through steady-state RANS simulation, using the k-epsilon turbulence model, of the vehicle during a cornering manoeuvre at a constant speed of 38 m/s with the lean angle varying from 45 to 55 degrees from vertical. This manoeuvre was analysed in 1 degree intervals. Large lift forces were observed, with centre of pressure located near the front of the motorcycle, which increase as the motorcycle leans further.
Technical Paper

Coupling of Driveline and Body Vibrations in Trucks

1996-10-01
962206
Torsional motion of a truck driveline system is coupled with other motions of its components. In this paper, a comprehensive model of the truck driveline and body for vibration analysis was developed. Coupling of the torsional vibration of the truck driveline system with the body fore-aft and vertical vibrations was investigated. A mathematical model, including the torsional vibration of the driveline system and the whole body vibrations of the truck, was constructed. The driveline system was modelled as a set of inertia discs linked together by massless springs and the tyre was represented as having massless circumferential band which is elastically connected to the carcass with the bands being subject to longitudinal forces at the road surface. System behaviour at steady and transient runs was developed.
Technical Paper

Data Acquisition Systems: Issues of Use and Interpretation of Data

2009-01-01
2009-01-1673
Data acquisition systems are becoming widespread in various motorsport categories. Manufacturers and suppliers of such systems can provide excellent training materials regarding their installation and use but it is felt that the advantage goes to those teams with full understanding of the issues associated with obtaining and interpreting data. In particular, assumptions, limitations and sources of error associated with sensors and data processing systems must be at least appreciated for understanding and making decisions based on information yielded. This paper highlights some of these issues and recommends that suitable education courses be completed by practitioners in the field.
Technical Paper

Design of Drive Cycle for Electric Powertrain Testing

2023-04-11
2023-01-0482
Drive cycles have been the official way to create standardized comparisons of fuel economy and emission levels between vehicles. Since the 1970s these have evolved to be more representative of real-world driving, with today’s standard being the World Harmonized Light Vehicle Testing Procedure. The performance of battery electric vehicles which consist of electric drives, battery, regenerative braking and their management systems may differ when compared to that of vehicles powered by conventional internal combustion engines. However, drive cycles used for evaluating the performance of vehicles, were originally developed for conventional powered vehicles. Moreover, the kinematic parameters that can distinguish the real-world performance of the differently powered vehicles are not fully known. This work aims to investigate the difference between vehicles powered by pure internal combustion engine, electric hybrid and pure electric drive.
Technical Paper

Design of a Robust Tyre Force Estimator Using an Extended Kalman Filter

2005-04-11
2005-01-0402
This paper will present a method of estimating tyre friction force using an extended Kalman filter (EKF). A review of current and proposed methods for tyre force estimation from the literature will be given. The EKF developed will estimate vehicle motions and tyre forces as state estimates from a noisy measurement set. The tyre forces will be compared to those from a high order vehicle model with non-linear tyres, which is subjected to the same tests as the measured vehicle, in order to validate the estimated forces. The robustness of the estimator to noise and input errors will be tested. The ultimate aim of this work is to provide estimates of tyre forces to a controller such as ABS or TCS.
Technical Paper

Development and Analysis of a Prototype Controllable Suspension

1997-08-06
972691
Persisting concerns regarding ride comfort, directional stability and more recently road damage have caused the manufacturers of commercial vehicles to consider controllable suspension systems. An electronically controllable adaptive suspension that comprises a variable spring rate system, switchable damping and load levelling is proposed as a cost-effective solution. This paper describes the aforementioned system and provides an outline of the design scheme for a prototype system; practical issues such as system configuration/detail, control system requirements, etc., are discussed. The system is evaluated analytically and both ride and handling modes are examined. In conclusion, performance capabilities are defined and cost-benefit issues addressed.
Technical Paper

Development of a PN Surrogate Model Based on Mixture Quality in a GDI Engine

2021-09-05
2021-24-0013
A novel surrogate model is presented, which predicts the engine-out Particle Number (PN) emissions of a light-duty, spray-guided, turbo-charged, GDI engine. The model is developed through extensive CFD analysis, carried out using the Siemens Simcenter STAR-CD, and considers a range of part-load operating conditions and single-variable sweeps where control parameters such as start of injection and injection pressure are varied in isolation. The work is attached to the Ford-led APC6 DYNAMO project, which aims to improve efficiency and reduce harmful emissions from the next generation of gasoline engines. The CFD work focused on the air exchange, fuel spray and mixture preparation stages of the engine cycle. A combined Rosin-Rammler and Reitz-Diwakar model, calibrated over a wide range of injection pressure, is used to model fuel atomization and secondary droplets break-up.
Technical Paper

Drum Brake Contact Analysis and its Influence on Squeal Noise Prediction

2003-10-19
2003-01-3348
A non-linear contact analysis of a leading-trailing shoe drum brake, using the finite element method, is presented. The FE model accurately captures both the static and pseudo-dynamic behaviour at the friction interface. Flexible-to-flexible contact surfaces with elastic friction capabilities are used to determine the pressure distribution. Static contact conditions are established by initially pressing the shoes against the drum. This first load step is followed by a gradual increase of applied rotation to the drum in order to define the maximum reacted braking torque and pseudo-dynamic pressure distribution at the transition point between sticking and sliding motion. The method clearly illustrates the changes in contact force that take place as a function of the applied pressure, coefficient of friction and initial gap between lining and rotor. These changes in contact area are shown to influence the overall stability and therefore squeal propensity of the brake assembly.
Technical Paper

Energy Optimal Control for Formula One Race Car

2022-08-30
2022-01-1043
Formula One (F1) is considered to be the forefront of innovation for the automotive and motorsport industry. One of the key provisions has been towards the inclusion of the Energy Recovery System (ERS) since 2014 in F1 regulations. ERS comprises Motor Generator Unit-Heat (MGU-H), Motor Generator Unit-Kinetic (MGU-K) and an Energy Storage (ES). This has not only converted the conventional powertrain into a hybrid power-split device, but also imposed constraints on the fuel energy available, energy recovered and deployed by MGU-K, and charge stored in ES, along with various other parameters. Although the objective for a F1 race is to minimize lap-time, it is obvious that there is no unique control path or decision to meet this objective. This builds up needs to optimally control the power-split and energy of the system.
X