Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Accelerated Fatigue and Modal Parameter Identification of Lightweight Structures

2014-06-30
2014-01-2095
Car components are exposed to the random/harmonic/impact excitation which can result in component failure due to vibration fatigue. The stress and strain loads do depend on local stress concentration effects and also on the global structural dynamics properties. Standardized fatigue testing is long-lasting, while the dynamic fatigue testing can be much faster; however, the dynamical changes due to fatigue are usually not taken into account and therefore the identified fatigue and structural parameters can be biased. In detail: damage accumulation results in structural changes (stiffness, damping) which are hard to measure in real time; further, structural changes change the dynamics of the loaded system and without taking this changes into account the fatigue load in the stress concentration zone can change significantly (even if the excitation remains the same). This research presents a new approach for accelerated vibration testing of real structures.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

2016-04-05
2016-01-0558
The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Fast Charging at Cold Conditions—Model-Based Control Enabled by Multi-Scale Multi-Domain Plant Model

2022-03-29
2022-01-0702
Fast charging of batteries at cold conditions faces the challenge of promoting undesired cell degradation phenomena such as lithium plating. The occurrence of lithium plating is strongly related to local surface potentials and temperatures involving the scales of the electrode surface, the unit cell and the entire module or pack. A multi-scale, multi-domain model is presented, enhancing a Newman based unit cell model with consistent models for heat generation and lithium plating and integrating this 1D+1D approach into a thermal 3D model on module level. The basic equations are presented and three different plating models from literature are discussed. The thermal model is assessed in open-loop simulations and the different plating approaches are compared in charge/discharge simulations at different operating conditions. The full multi-scale, multi-domain model is applied as a virtual sensor for model-based control of fast charging at cold conditions.
Technical Paper

Piezoresistive 3D Printed (FFF) Accelerometers

2021-08-31
2021-01-1097
Fused filament fabrication (FFF) 3D printing technology, one of the most accessible additive manufacturing technologies, can be used to create sensors based on different sensing principles, e.g.: capacitance, inductance, piezoelectricity, piezoresistivity. Piezoresistivity (strain-dependent electrical resistivity) has been predominantly used for the creation of static/quasistatic 3d printed sensors with relatively low sensitivity. This study researches the possibilities of a single-process 3d printing of a piezoresistive accelerometer. Initially, the methods for the axial and cross-axial identification of the piezoresistive properties are discussed. It is shown that the sensitivity is highly dependent on the printing parameters, especially the printing track orientation vs the mechanical load orientation. The research on the sensitivity of a 3D printed piezoresistive structure is extended with an inertial mass-based accelerometer design.
Technical Paper

Two-Stroke S.I. Engine Competitive to Four-Stroke Engine in Terms of the Exhaust Emission

1994-09-01
941681
A model engine with disintegrated working cycle was build. Its operation is not autonomous; compression of the working air is performed separately outside the engine by the compressed-air line supply. Pre-compressed charge together with the injected fuel is introduced in the combustion chamber. The model engine makes possible to determine indicated performance characteristics and its emission capability. Effective measured engine characteristics are of course not comparable with those obtained by an practical engine. The model presented is a two-stroke cycle engine. Exhaust emission picture of the presented engine is comparable with the emission of a modern four-stroke engine.
X