Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Journal Article

Effect of Heat of Vaporization, Chemical Octane, and Sensitivity on Knock Limit for Ethanol - Gasoline Blends

2012-04-16
2012-01-1277
Ethanol and other high heat of vaporization (HoV) fuels result in substantial cooling of the fresh charge, especially in direct injection (DI) engines. The effect of charge cooling combined with the inherent high chemical octane of ethanol make it a very knock resistant fuel. Currently, the knock resistance of a fuel is characterized by the Research Octane Number (RON) and the Motor Octane Number (MON). However, the RON and MON tests use carburetion for fuel metering and thus likely do not replicate the effect of charge cooling for DI engines. The operating conditions of the RON and MON tests also do not replicate the very retarded combustion phasing encountered with modern boosted DI engines operating at low-speed high-load. In this study, the knock resistance of a matrix of ethanol-gasoline blends was determined in a state-of-the-art single cylinder engine equipped with three separate fuel systems: upstream, pre-vaporized fuel injection (UFI); port fuel injection (PFI); and DI.
Technical Paper

Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends

2015-04-14
2015-01-1242
This paper presents a numerical study of trace knocking combustion of ethanol/gasoline blends in a modern, single cylinder SI engine. Results are compared to experimental data from a prior, published work [1]. The engine is modeled using GT-Power and a two-zone combustion model containing detailed kinetic models. The two zone model uses a gasoline surrogate model [2] combined with a sub-model for nitric oxide (NO) [3] to simulate end-gas autoignition. Upstream, pre-vaporized fuel injection (UFI) and direct injection (DI) are modeled and compared to characterize ethanol's low autoignition reactivity and high charge cooling effects. Three ethanol/gasoline blends are studied: E0, E20, and E50. The modeled and experimental results demonstrate some systematic differences in the spark timing for trace knock across all three fuels, but the relative trends with engine load and ethanol content are consistent. Possible reasons causing the differences are discussed.
Journal Article

Soy Biodiesel Oxidation at Vehicle Fuel System Temperature: Influence of Aged Fuel on Fresh Fuel Degradation to Simulate Refueling

2017-03-28
2017-01-0809
An experimental study of the effects of partially-oxidized biodiesel fuel on the degradation of fresh fuel was performed. A blend of soybean oil fatty acid methyl esters (FAMEs) in petroleum diesel fuel (30% v:v biodiesel, B30) was aged under accelerated conditions (90°C with aeration). Aging conditions focused on three different degrees of initial oxidation: 1) reduced oxidation stability (Rancimat induction period, IP); 2) high peroxide values (PV); and 3) high total acid number (TAN). Aged B30 fuel was mixed with fresh B30 fuel at two concentrations (10% and 30% m:m) and degradation of the mixtures at the above aging conditions was monitored for IP, PV, TAN, and FAME composition. Greater content of aged fuel carryover (30% m:m) corresponded to stronger effects. Oxidation stability was most adversely affected by high peroxide concentration (Scenario 2), while peroxide content was most reduced for the high TAN scenario (Scenario 3).
X