Refine Your Search

Topic

Author

Search Results

Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

A Fuel Rate Based Catalyst Pass Fraction Model for Predicting Tailpipe NOx Emissions from a Composite Car

1999-03-01
1999-01-0455
Modeling tailpipe NOx emissions has always been difficult due to the complexity of the numerous factors involved in the catalytic conversion of the pollutant. Most emissions modeling has been based on steady state driving. A parameterized algebraic model for second-by-second tailpipe emissions of NOx for a composite Tier 1 car is presented employing data from the Federal Test Procedure Revision Project (FTPRP). Calculating fuel rate from measured engine out values, the catalytic converter is physically modeled based on the fuel rate history and a few fitted parameters. Under certain conditions, the changes in fuel rate are related to trends in the air to fuel ratio. The model accurately predicts the time dependence of hot stabilized tailpipe NOx emissions in the FTP bag 3 and US06 driving cycles. Modeling of low power driving, as in bag 2, is not as successful.
Technical Paper

A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies

1996-02-01
960073
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The success of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper.
Technical Paper

A LNT+SCR System for Treating the NOx Emissions from a Diesel Engine

2006-04-03
2006-01-0210
An aftertreatment system involving a LNT followed by a SCR catalyst is proposed for treating the NOx emissions from a diesel engine. NH3 (or urea) is injected between the LNT and the SCR. The SCR is used exclusively below 400°C due to its high NOx activity at low temperatures and due to its ability to store and release NH3 below 400°C, which helps to minimize NH3 and NOx slip. Above 400°C, where the NH3 storage capacity of the SCR falls to low levels, the LNT is used to store the NOx. A potassium-based LNT is utilized due to its high temperature NOx storage capability. Periodically, hydrocarbons are oxidized on the LNT under net lean conditions to promote the thermal release of the NOx. NH3 is injected simultaneously to reduce the released NOx over the SCR. The majority of the hydrocarbons are oxidized on the front portion of the LNT, resulting in the rapid release of stored NOx from that portion of the LNT.
Technical Paper

An Approach for Modeling the Effects of Gas Exchange Processes on HCCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies

2002-10-21
2002-01-2829
The present study introduces a modeling approach for investigating the effects of valve events and gas exchange processes in the framework of a full-cycle HCCI engine simulation. A multi-dimensional fluid mechanics code, KIVA-3V, is used to simulate exhaust, intake and compression up to a transition point, before which chemical reactions become important. The results are then used to initialize the zones of a multi-zone, thermo-kinetic code, which computes the combustion event and part of the expansion. After the description and the validation of the model against experimental data, the application of the method is illustrated in the context of variable valve actuation. It has been shown that early exhaust valve closing, accompanied by late intake valve opening, has the potential to provide effective control of HCCI combustion.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

Application of Empirical Asperity Contact Model to High Fidelity Wet Clutch System Simulations

2019-04-02
2019-01-1301
Wet clutches are complex hydrodynamic devices used in both conventional and electrified drivetrain systems. They couple or de-couple powertrain components for applications such as automatic shifting, engine disconnect and torque vectoring. Clutch engagement behaviors vary greatly, depending on design parameters and operating conditions. Because of their direct impact on vehicle drivability and fuel economy, a predictive CAE model is desired for enabling analytical design verification processes. During engagement, a wet clutch transmits torque through viscous shear and asperity contact. A conventional Coulomb’s model, which is routinely utilized in shift simulations, is inadequate to capture non-linear hydrodynamic effects for higher fidelity analysis. Extensive research has been conducted over the years to derive hydrodynamic torque transfer models based on 1D squeeze film or 3D CFD. They are typically coupled with an elastic asperity contact model for mechanical torque transfer.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

Comparative Life Cycle Assessment of Plastic and Steel Vehicle Fuel Tanks

1998-11-30
982224
Federal standards that mandate improved fuel economy have resulted in the increased use of lightweight materials in automotive applications. However, the environmental burdens associated with a product extend well beyond the use phase. Life cycle assessment is the science of determining the environmental burdens associated with the entire life cycle of a given product from cradle-to-grave. This report documents the environmental burdens associated with every phase of the life cycle of two fuel tanks utilized in full-sized 1996 GM vans. These vans are manufactured in two configurations, one which utilizes a steel fuel tank, and the other a multi-layered plastic fuel tank consisting primarily of high density polyethylene (HDPE). This study was a collaborative effort between GM and the University of Michigan's National Pollution Prevention Center, which received funding from EPA's National Risk Management Research Laboratory.
Technical Paper

Comparison of High- and Low-Pressure Electric Supercharging of a HDD Engine: Steady State and Dynamic Air-Path Considerations

2016-04-05
2016-01-1035
This paper numerically investigates the performance implications of the use of an electric supercharger in a heavy-duty DD13 diesel engine. Two electric supercharger configurations are examined. The first is a high-pressure (HP) configuration where the supercharger is placed after the turbocharger compressor, while the second is a low-pressure (LP) one, where the supercharger is placed before the turbocharger compressor. At steady state, high engine speed operation, the airflows of the HP and LP implementations can vary by as much as 20%. For transient operation under the Federal Test Procedure (FTP) heavy duty diesel (HDD) engine transient drive cycle, supercharging is required only at very low engine speeds to improve airflow and torque. Under the low speed transient conditions, both the LP and HP configurations show similar increases in torque response so that there are 44 fewer engine cycles at the smoke-limit relative to the baseline turbocharged engine.
Journal Article

Control Strategies for Power Quantized Solid Oxide Fuel Cell Hybrid Powertrains: In Mobile Robot Applications

2016-04-05
2016-01-0317
This paper addresses scheduling of quantized power levels (including part load operation and startup/shutdown periods) for a propane powered solid oxide fuel cell (SOFC) hybridized with a lithium-ion battery for a tracked mobile robot. The military requires silent operation and long duration missions, which cannot be met by batteries alone due to low energy density or with combustion engines due to noise. To meet this need we consider an SOFC operated at a few discrete power levels where maximum system efficiency can be achieved. The fuel efficiency decreases during transients and resulting thermal gradients lead to stress and degradation of the stack; therefore switching power levels should be minimized. Excess generated energy is used to charge the battery, but when it’s fully charged the SOFC should be turned off to conserve fuel.
Technical Paper

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

2003-11-10
2003-01-3369
The power management control system development and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model-based approach, and is based on the dynamic programming technique. A vehicle model is first developed, and the optimal control actions to maximize fuel economy are then obtained by the dynamic programming method. A near-optimal control strategy is subsequently extracted and implemented using a rapid-prototyping control development system, which provides a convenient environment to adjust the control algorithms and accommodate various I/O configurations. Dynamometer-testing results confirm that the proposed algorithm helps the prototype hybrid truck to achieve a 45% fuel economy improvement on the benchmark (non-hybrid) vehicle. It also compares favorably to a conventional rule-based control method, which only achieves a 31% fuel economy improvement on the same hybrid vehicle.
Technical Paper

Control of Gear Ratio and Slip in Continuously Variable Transmissions: A Model Predictive Control Approach

2017-03-28
2017-01-1104
The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Technical Paper

Design Optimization of Vehicle Muffler Transmission Loss using Hybrid Method

2015-06-15
2015-01-2306
This study presents an efficient process to optimize the transmission loss of a vehicle muffler by using both experimental and analytical methods. Two production mufflers were selected for this study. Both mufflers have complex partitions and one of them was filled with absorbent fiberglass. CAD files of the mufflers were established for developing FEA models in ANSYS and another commercial software program (CFEA). FEA models were validated by experimental measurements using a two-source method. After the models were verified, sensitivity studies of design parameters were performed to optimize the transmission loss (TL) of both mufflers. The sensitivity study includes the perforated hole variations, partition variations and absorbent material insertion. The experimental and sensitivity analysis results are included in the paper.
Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

Effects of Differential Pressure Sensor Gauge-Lines and Measurement Accuracy on Low Pressure EGR Estimation Error in SI Engines

2017-03-28
2017-01-0531
Low Pressure (LP) Exhaust Gas Recirculation (EGR) promises fuel economy benefits at high loads in turbocharged SI engines as it allows better combustion phasing and reduces the need for fuel enrichment. Precise estimation and control of in-cylinder EGR concentration is crucial to avoiding misfire. Unfortunately, EGR flow rate estimation using an orifice model based on the EGR valve ΔP measurement can be challenging given pressure pulsations, flow reversal and the inherently low pressure differentials across the EGR valve. Using a GT-Power model of a 1.6 L GDI turbocharged engine with LP-EGR, this study investigates the effects of the ΔP sensor gauge-line lengths and measurement noise on LP-EGR estimation accuracy. Gauge-lines can be necessary to protect the ΔP sensor from high exhaust temperatures, but unfortunately can produce acoustic resonance and distort the ΔP signal measured by the sensor.
X