Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Rearview Mirror Reflectivity and the Quality of Distance Information Available to Drivers

1993-03-01
930721
In two experiments, we examined the possibility that rearview mirror reflectivity influences drivers' perceptions of the distance to following vehicles. In the first experiment, subjects made magnitude estimates of the distance to a vehicle seen in a variable-reflectance rearview mirror. Reflectivity had a significant effect on the central tendency of subjects' judgments: distance estimates were greater when reflectivity was lower. There was no effect of reflectivity on the variability of judgments. In the second experiment, subjects were required to decide, under time pressure, whether a vehicle viewed in a variable-reflectance rearview mirror had been displaced toward them or away from them when they were shown two views of the vehicle in quick succession. We measured the speed and accuracy of their responses. Mirror reflectivity did not affect speed or accuracy, but it did cause a bias in the type of errors that subjects made.
Journal Article

Subjective and Objective Effects of Driving with LED Headlamps

2014-04-01
2014-01-1985
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
X