Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Characterizing Light-Off Behavior and Species-Resolved Conversion Efficiencies During In-Situ Diesel Oxidation Catalyst Degreening

2006-04-03
2006-01-0209
Degreening is crucial in obtaining a stable catalyst prior to assessing its performance characteristics. This paper characterizes the light-off behavior and conversion efficiency of a Diesel Oxidation Catalyst (DOC) during the degreening process. A platinum DOC is degreened for 16 hours in the presence of actual diesel engine exhaust at 650°C and 10% water (H2O) concentration. The DOC's activity for carbon monoxide (CO) and for total hydrocarbons (THC) conversion is checked at 0, 1, 2, 3, 4, 6, 8, 10, 12, and 16 hours of degreening. Pre-and post-catalyst hydrocarbon species are analyzed via gas chromatography at 0, 4, 8, and 16 hours of degreening. It is found that both light-off temperature and species-resolved conversion efficiencies change rapidly during the first 8 hours of degreening and then stabilize to a large degree. T50, the temperature where the catalyst is 50% active towards a particular species, increases by 14°C for CO and by 11°C for THC through the degreening process.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

Influence of HCCI and SACI Combustion Modes on NH3 Generation and Subsequent Storage across a TWC-SCR System

2016-04-05
2016-01-0951
Advanced engine combustion strategies, such as HCCI and SACI, allow engines to achieve high levels of thermal efficiency with low levels of engine-out NOx emissions. To maximize gains in fuel efficiency, HCCI combustion is often run at lean operating conditions. However, lean engine operation prevents the conventional TWC after-treatment system from reaching legislated tailpipe emissions due to oxygen saturation. One potential solution for handling this challenge without the addition of costly NOx traps or on-board systems for urea injection is the passive TWC-SCR concept. This concept includes the integration of an SCR catalyst downstream of a TWC and the use of periods of rich or stoichiometric operation to generate NH3 over the TWC to be stored on the SCR catalyst until it is needed for NOx reduction during subsequent lean operation.
Technical Paper

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

2006-04-03
2006-01-0201
Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NOx). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography. As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.
X