Refine Your Search

Topic

Author

Search Results

Technical Paper

A Network-Based Expert System for Comparative Analysis of Pulley Assembly Methods

1990-02-01
900818
The pulleys employed in automotive accessory drive systems very often consist of a two piece assembly; a multitude of fastening techniques are used in completing the assembly. There are numerous assembly methods and a variety of distinct pulley configurations dictated by the various automobile manufacturers in accordance with individual accessory drive needs. An expert system is being developed to evaluate the merit of multiple assembly alternatives for a specific pulley application. The expert system provides a consistent evaluation tool for assembly alternatives, balancing the influence of product cost, strength and quality considerations. The knowledge-based system is implemented in an expert system shell called AGNESS (A Generalized Network-based Expert System Shell). The expert system judges the acceptability of various pulley assembly techniques, assigning a high “merit value” to the better designs and proportionately lower values to less desirable designs.
Technical Paper

Airborne Laser Radar Investigations of Clear Air Turbulence

1966-02-01
660190
Conclusions based on the airborne experiments with laser radars are summarized in this paper. Details of the equipment and the flight procedures will be displayed during the oral presentation at the conference.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Journal Article

Assessment of the Accuracy of Certain Reduced Order Models used in the Prediction of Occupant Injury during Under-Body Blast Events

2014-04-01
2014-01-0752
It is of considerable interest to developers of military vehicles, in early phases of the concept design process as well as in Analysis of Alternatives (AoA) phase, to quickly predict occupant injury risk due to under-body blast loading. The most common occupant injuries in these extremely short duration events arise out of the very high vertical acceleration of vehicle due to its close proximity to hot high pressure gases from the blast. In a prior study [16], an extensive parametric study was conducted in a systematic manner so as to create look-up tables or automated software tools that decision-makers can use to quickly estimate the different injury responses for both stroking and non-stroking seat systems in terms of a suitable blast load parameter. The primary objective of this paper is to quantitatively evaluate the accuracy of using such a tool in lieu of building a detailed model for simulation and occupant injury assessment.
Technical Paper

Automotive Product Design and Development: Forecast and Analysis of the North American Auto Industry Trends Through 2007

1999-09-28
1999-01-3219
The paper presents a brief summary of results from a Delphi forecast focused on North American Auto industry philosophies, practices, and tools for various phases of the product- development process, and their impact on cost, quality, and design lead time. The forecasting technique is a systematic, iterative method of forecasting based upon the judgement of a panel composed of knowledgeable experts. The study provides a snapshot of current expectations for the product development process, including the use of computer aided design tools, design methodologies, strategies, tools, and design education/training. The paper highlights issues pertaining to product cycle time, organizational barriers, supplier's role and globalization challenges.
Technical Paper

Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys

1997-02-24
970325
New high-temperature Mg alloys are being considered to replace 380 Al in transmission cases, wherein bolt-load retention, and creep, is of prime concern. One of these alloys is die cast AE42, which has much better creep properties than does AZ91D but is still not as creep resistant as 380 Al. It is thus important to investigate bolt-load retention and creep of AE42 as an initial step in assessing its suitability as a material for transmission housings. To that end, the bolt-load retention behavior of die-cast AE42, AZ91D and 380 Al have been examined using standard M10 bolts specially instrumented with stable high-temperature strain gages. The bolt-load retention test pieces were die cast in geometries approximating the flange and boss regions in typical bolted joints. Bolt-load retention properties were examined as a function of time (at least 100 hours), temperature (150 and 175 °C) and initial bolt preload (14 to 34 kN).
Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Technical Paper

Comfortable Head and Neck Postures in Reclined Seating for Use in Automobile Head Rest Design

2019-04-02
2019-01-0408
Little information is available on passenger preferences for posture and support in highly reclined seat configurations. To address this gap, a laboratory study was conducted with 24 adult passengers at seat back angles from 23 to 53 degrees. Passenger preferences for head and neck posture with and without head support were recorded. This paper presents the characteristics of the passengers’ preferred head support with respect to thorax, head, and neck posture.
Technical Paper

Critical Issues in Development of Open Architecture Controllers

1996-05-01
961655
Open-Architecture Control Systems allow easy integration of control system that their elements supplied by multiple vendors. The driver behind open architecture is obtaining enhanced system performance at affordable cost. The University of Michigan started a project on open-architecture in 1988. This paper offers a short description of the project, and summarizes the impact of this new technology on the equipment supplier industry (control vendors and machine builders) and the end users of this technology.
Technical Paper

Design Kit for Accessory Drives (DKAD): Dynamic Analysis of Serpentine Belt Drives

2003-05-05
2003-01-1661
DKAD is an automated analysis tool for evaluating dynamic characteristics of accessory drives. Rotation response analysis predicts natural frequencies and effects of crankshaft excitation. Lateral response of each belt span shows the effect of pulley run-out and parametric excitation. DKAD systematically allows a user to define a design and its operating conditions and then performs a sequence of analysis to visualize the rotational and lateral responses. It also allows a user to quickly explore and assess alternative designs. Belt layout and associated parameters can be saved in templates for future reference.
Journal Article

Evaluation of the Seat Index Point Tool for Military Seats

2016-04-05
2016-01-0309
This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Technical Paper

Finite Element Modeling of Bolt Load Retention of Die-Cast Magnesium

2000-03-06
2000-01-1121
The use of die cast magnesium for automobile transmission cases offers promise for reducing weight and improving fuel economy. However, the inferior creep resistance of magnesium alloys at high temperature is of concern since transmission cases are typically assembled and joined by pre-loaded bolts. The stress relaxation of the material could thus adversely impact the sealing of the joint. One means of assessing the structural integrity of magnesium transmission cases is modeling the bolted joint, the topic of this paper. The commercial finite element code, ABAQUS, was used to simulate a well characterized bolt joint sample. The geometry was simulated with axi-symmetric elements with the exact geometry of a M10 screw. Frictional contact between the male and female parts is modeled by using interface elements. Material creep is described by a time hardening power law whose parameters are fit to experimental creep test data.
Technical Paper

First Order Analysis for Automotive Body Structure Design-Part 2: Joint Analysis Considering Nonlinear Behavior

2004-03-08
2004-01-1659
We have developed new CAE tools in the concept design process based on First Order Analysis (FOA). Joints are often modeled by rotational spring elements. However, it is very difficult to obtain good accuracy. We think that one of the reasons is the influence of the nonlinear behavior due to local elastic buckling. Automotive body structures have the possibility of causing local buckling since they are constructed by thin walled cross sections. In this paper we focus on this behavior. First of all, we present the concept of joint analysis in FOA, using global-local analysis. After that, we research nonlinear behavior in order to construct an accurate joint reduced model. (1) The influence of local buckling is shown using uniform beams. (2) Stiffness decrease of joints due to a local buckling is shown. (3) The way of treating joint modeling considering nonlinear behavior is proposed.
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Infant and child anthropometry

1974-09-17
1974-13-0013
Although over 800 references to child and infant anthropometry are in the literature, most have limited validity and application to current populations. Functional measures required by industry and government for federal safety standards for design of dummies, child products, furniture, or protective devices such as restraint systems have either been incomplete, inadequate, or nonexistent. Some of the limitations influencing validity of existing data have been outlined for the potential user. As a start toward obtaining necessary functional anthropometric data, The University of Michigan is currently conducting a study sponsored by the U.S. Consumer Product Safety Commission to obtain valid nationwide measurements on a representative U.S. population from birth to age 12 years. In this study some 41 measurements, including many functional measures, as well as seated and supine whole-body centers of gravity, are being taken utilizing a new automated anthropometric minicomputer system.
Journal Article

Low-Order Contact Load Distribution Model for Ball Nut Assemblies

2016-04-05
2016-01-1560
Ball nut assemblies (BNAs) are used in a variety of applications, e.g., automotive, aerospace and manufacturing, for converting rotary motion to linear motion (or vice versa). In these application areas, accurate characterization of the dynamics of BNAs using low-order models is very useful for performance simulation and analyses. Existing low-order contact load models of BNAs are inadequate, partly because they only consider the axial deformations of the screw and nut. This paper presents a low-order load distribution model for BNAs which considers the axial, torsional and lateral deformations of the screw and nut. The screw and nut are modeled as finite element beams, while Hertzian Contact Theory is used to model the contact condition between the balls and raceways of the screw and nut. The interactions between the forces and displacements of the screw and nut and those at the ball-raceway contact points are established using transformation matrices.
Technical Paper

Mechanical Strength and Failure Mode of Flow Drill Screw Joints in Coach-Peel Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses and Processing Conditions

2018-04-03
2018-01-0116
The mechanical strength and failure mode of flow drill screw (FDS) joints in coach-peel specimens of aluminum 6082-T6 sheets of three different thicknesses of 2.5, 2.8 and 3.0 mm and three different processing conditions under quasi-static loading conditions are investigated by experiments. The experimental results indicate that the mechanical strength and failure mode of FDS joints in coach-peel specimens are affected by the specimen thickness, clearance hole and stripping. The maximum load of a coach-peel specimen with an FDS joint with clearance hole increases as the thickness increases. For each of the thickness groups of 2.5, 2.8 and 3.0 mm, the maximum load of a coach-peel specimen with an FDS joint without clearance hole is lower than that with clearance hole. For the thickness group of 2.8 mm, the maximum load of a coach-peel specimen with a stripped FDS joint with clearance hole is lower than those of non-stripped ones with and without clearance hole.
X