Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

A Comparative Study on Sound Transmission Loss and Absorption Coefficient of Acoustical Materials

2011-05-17
2011-01-1625
Acoustical materials are widely used in automotive vehicles and other industrial applications. Two important parameters namely Sound Transmission Loss (STL) and absorption coefficient are commonly used to evaluate the acoustical performance of these materials. Other parameters, such as insertion loss, noise reduction, and loss factors are also used to judge their performance depending on the application of these materials. A systematic comparative study of STL and absorption coefficient was conducted on various porous acoustical materials. Several dozen materials including needled cotton fiber (shoddy) and foam materials with or without barrier/scrim were investigated. The results of STL and absorption coefficient are presented and compared. As expected, it was found that most of materials are either good in STL or good in absorption. However, some combinations can achieve a balance of performance in both categories.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Computational Fluid Dynamics (CFD) Model for Gear Churning

2018-04-03
2018-01-0401
This paper presents a computational fluid dynamics (CFD) model for predicting power losses associated with churning of oil by gears or other similar rotating components. The modeling approach and parameters are optimized to ensure the accuracy, robustness, and computational efficiency of these predictions. These studies include a look at two types of mesh and a turbulence model selection. The focus is on multiple reference frame (MRF) modeling technique for its computational efficiency advantage. Model predictions are compared to previously published experimental data [1] under varying operating conditions typical for an automotive transmission application. The model shows good agreement with the hardware both quantitatively and qualitatively, capturing the trends with speed and submersion level. The paper concludes with presenting some key lessons learned, and recommendation for future work to ultimately build a highly reliable tool as part of the virtual product development.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

A Magic Cube Approach for Crashworthiness Design

2006-04-03
2006-01-0671
Vehicle structure crashworthiness design is one of the most challenging problems in product development and it has been studied for decades. Challenges still remain, which include developing a reliable and systematic approach for general crashworthiness design problems, which can be used to design an optimum vehicle structure in terms of topology, shape, and size, and for both structural layout and material layout. In this paper, an advanced and systematic approach is presented, which is called Magic Cube (MQ) approach for crashworthiness design. The proposed MQ approach consists of three major dimensions: Decomposition, Design Methodology, and General Considerations. The Decomposition dimension is related to the major approaches developed for the crashworthiness design problem, which has three layers: Time (Process) Decomposition, Space Decomposition, and Scale Decomposition.
Technical Paper

A Network-Based Expert System for Comparative Analysis of Pulley Assembly Methods

1990-02-01
900818
The pulleys employed in automotive accessory drive systems very often consist of a two piece assembly; a multitude of fastening techniques are used in completing the assembly. There are numerous assembly methods and a variety of distinct pulley configurations dictated by the various automobile manufacturers in accordance with individual accessory drive needs. An expert system is being developed to evaluate the merit of multiple assembly alternatives for a specific pulley application. The expert system provides a consistent evaluation tool for assembly alternatives, balancing the influence of product cost, strength and quality considerations. The knowledge-based system is implemented in an expert system shell called AGNESS (A Generalized Network-based Expert System Shell). The expert system judges the acceptability of various pulley assembly techniques, assigning a high “merit value” to the better designs and proportionately lower values to less desirable designs.
Technical Paper

A New Approach to Modeling Driver Reach

2003-03-03
2003-01-0587
The reach capability of drivers is currently represented in vehicle design practice in two ways. The SAE Recommended Practice J287 presents maximum reach capability surfaces for selected percentiles of a generic driving population. Driver reach is also simulated using digital human figure models. In typical applications, a family of figure models that span a large range of the target driver population with respect to body dimensions is positioned within a digital mockup of the driver's workstation. The articulated segments of the figure model are exercised to simulate reaching motions and driver capabilities are calculated from the constraints of the kinematic model. Both of these current methods for representing driver reach are substantially limited. The J287 surfaces are not configurable for population characteristics, do not provide the user with the ability to adjust accommodation percentiles, and do not provide any guidance on the difficulty of reaches that are attainable.
Technical Paper

A New Predictive Vehicle Particulate Emissions Index Based on Gasoline Simulated Distillation

2022-03-29
2022-01-0489
Fuel chemistry plays a crucial role in the continued reduction of particulate emissions (PE) and cleaner air quality from vehicles and equipment powered by internal combustion engines (ICE). Over the past ten years, there have been great improvements in predictive particulate emissions indices (correlative mathematical models) based on the fuel’s composition. Examples of these particulate indices (PI) are the Honda Particulate Matter Index (PMI) and the General Motors Particulate Evaluation Index (PEI). However, the analytical chemistry lab methods used to generate data for these two PI indices are very time-consuming. Because gasoline can be mixtures of hundreds of hydrocarbon compounds, these lab methods typically include the use of the high resolution chromatographic separation techniques such as detailed hydrocarbon analysis (DHA), with 100m chromatography columns and long (3 - 4 hours) analysis times per sample.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

A Two-Tracer LIF Strategy for Quantitative Oxygen Imaging in Engines Applied to Study the Influence of Skip-Firing on In-Cylinder Oxygen Contents of an SIDI Engine

2003-03-03
2003-01-1114
The effect of skip-firing (which is often applied in optical engine work) on the available in-cylinder oxygen concentration was investigated with a laser-induced fluorescence imaging setup that combines the measurement of fluorescence signals from toluene and 3-pentanone to quantitatively determine the distribution of molecular oxygen. We describe in detail the image processing procedure for this measurement. The reduction of in-cylinder oxygen when switching from skip-fired to continuous-fired engine operation is measured and compared to traditional exhaust measurements.
Journal Article

Active Masking of Tonal Noise using Motor-Based Acoustic Generator to Improve EV Sound Quality

2021-08-31
2021-01-1021
Electric motor whine is one of the main noise sources of electric vehicles (EVs). Without engine masking noise, high pitch tonal noise from electric motor can be highly annoying and raise sound quality issues for electrified propulsion systems. This paper describes a patented new technology that controls electric motor to actively mask annoying high-pitch tonal noise by (i) controlling electric motor to create complementary low order tones to enrich sound complexity and distract high pitch tones; (ii) controlling motor to generate random dithering noise to raise masking noise floor and reduce tone-to-noise ratio around tonal targets; (iii) combining complementary injection at low frequency and dithering at high frequency for enhanced masking. This new technology enables controlling masking noise level, frequency, order and bandwidth as a function of motor torque and speed for most effective masking.
Technical Paper

Advanced Anthropomorphic Test Device Concept Definition

1985-01-01
856030
This paper summarizes the results of Phase 1, Concept Definition, of the AATD program and identifies the reasons such a new test device is needed. The following areas are addressed: 1) injury priority from accident data; 2) current dummy design, use, and potential improvements; and 3) technical characteristics and design concepts for a new AATD, its data processing, and its certification systems.
Technical Paper

Advancements in Hardware-in-the-Loop Technology in Support of Complex Integration Testing of Embedded System Software

2011-04-12
2011-01-0443
Automotive technology is rapidly changing with electrification of vehicles, driver assistance systems, advanced safety systems etc. This advancement in technology is making the task of validation and verification of embedded software complex and challenging. In addition to the component testing, integration testing imposes even tougher requirements for software testing. To meet these challenges dSPACE is continuously evolving the Hardware-In-the-Loop (HIL) technology to provide a systematic way to manage this task. The paper presents developments in the HIL hardware technology with latest quad-core processors, FPGA based I/O technology and communication bus systems such as Flexray. Also presented are developments of the software components such as advanced user interfaces, GPS information integration, real-time testing and simulation models. This paper provides a real-world example of implication of integration testing on HIL environment for Chassis Controls.
Technical Paper

Aftertreatment Layouts Evaluation in the Context of Euro 7 Scenarios Proposed by CLOVE Abstract

2022-06-14
2022-37-0008
Euro 7/VII regulations are currently under discussion and are expected to be the last big regulatory step in Europe. From available documentation, it is clear the aim of further regulating the extended conditions of use which are still responsible of high emission events (e. g. cold start or altitude) as well as regulating secondary emissions such as NH3, N2O, CH4, Aldehydes (HCHO). Even if not completely fixed yet, the EU7 limits will be challenging for internal combustion engines and even more for Diesel. Despite a consistent reduction of market share, Diesel engines are expected to remain a significant portion in certain sectors such as Heavy duty (HD) and Light-commercial vehicle (LCV) for some decades. In order to reach the new limits being proposed, besides minimizing engine-out emissions, Diesel powertrain will need an aftertreatment system able to work at very high efficiency right after engine start and in almost every working and environmental condition.
Technical Paper

An Architecture for Autonomous Agents in a Driving Simulator

2000-04-02
2000-01-1596
The addition of synthetic traffic to a driving simulation greatly enhances the realism of the virtual world. Giving this traffic human-like behavior is likewise desirable, and has been the focus of some research over the past few years. This paper presents a modular architecture for including autonomous traffic in a driving simulation, and describes the first steps taken toward the application of this architecture to the DaimlerChrysler Auburn Hills Simulator. By separating the planning part of the agent from the low-level control and vehicle dynamics systems, the described architecture permits the inclusion of powerful, previously developed components in a straightforward way; in the present application, agents use Soar to reason about their actions. This paper gives an overview of the structures of the agents, and of the entire system, describes the components and their implementations, and discusses the current state of the project and plans for the future.
X