Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Technical Paper

A Magic Cube Approach for Crashworthiness Design

2006-04-03
2006-01-0671
Vehicle structure crashworthiness design is one of the most challenging problems in product development and it has been studied for decades. Challenges still remain, which include developing a reliable and systematic approach for general crashworthiness design problems, which can be used to design an optimum vehicle structure in terms of topology, shape, and size, and for both structural layout and material layout. In this paper, an advanced and systematic approach is presented, which is called Magic Cube (MQ) approach for crashworthiness design. The proposed MQ approach consists of three major dimensions: Decomposition, Design Methodology, and General Considerations. The Decomposition dimension is related to the major approaches developed for the crashworthiness design problem, which has three layers: Time (Process) Decomposition, Space Decomposition, and Scale Decomposition.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

A Study of Age-Related Thoracic Injury in Frontal Crashes using Analytic Morphomics

2018-04-03
2018-01-0549
The purpose of this study was to use detailed medical information to evaluate thoracic injuries in elderly patients in real world frontal crashes. In this study, we used analytic morphomics to predict the effect of torso geometry on rib fracture, a major source of injury for the elderly. Analytic morphomics extracts body features from computed tomography (CT) scans of patients in a semi-automated fashion. Thoracic injuries were examined in front row occupants involved in frontal crashes from the International Center for Automotive Medicine (ICAM) database. Among these occupants, two age groups (age < 60 yr. [Nonelderly] and age ≥ 60 yr. [Elderly]) who suffered severe thoracic injury were analyzed. Regression analyses were conducted to investigate injury outcomes using variables for vehicle, demographics, and morphomics. Compared to the nonelderly group, the elderly group sustained more rib fractures.
Journal Article

Accuracy and Robustness of Parallel Vehicle Mass and Road Grade Estimation

2017-03-28
2017-01-1586
A variety of vehicle controls, from active safety systems to power management algorithms, can greatly benefit from accurate, reliable, and robust real-time estimates of vehicle mass and road grade. This paper develops a parallel mass and grade (PMG) estimation scheme and presents the results of a study investigating its accuracy and robustness in the presence of various noise factors. An estimate of road grade is calculated by comparing the acceleration as measured by an on-board longitudinal accelerometer with that obtained by differentiation of the undriven wheel speeds. Mass is independently estimated by means of a longitudinal dynamics model and a recursive least squares (RLS) algorithm using the longitudinal accelerometer to isolate grade effects. To account for the influences of acceleration-induced vehicle pitching on PMG estimation accuracy, a correction factor is developed from controlled tests under a wide range of throttle levels.
Technical Paper

Advanced Anthropomorphic Test Device Concept Definition

1985-01-01
856030
This paper summarizes the results of Phase 1, Concept Definition, of the AATD program and identifies the reasons such a new test device is needed. The following areas are addressed: 1) injury priority from accident data; 2) current dummy design, use, and potential improvements; and 3) technical characteristics and design concepts for a new AATD, its data processing, and its certification systems.
Technical Paper

An Architecture for Autonomous Agents in a Driving Simulator

2000-04-02
2000-01-1596
The addition of synthetic traffic to a driving simulation greatly enhances the realism of the virtual world. Giving this traffic human-like behavior is likewise desirable, and has been the focus of some research over the past few years. This paper presents a modular architecture for including autonomous traffic in a driving simulation, and describes the first steps taken toward the application of this architecture to the DaimlerChrysler Auburn Hills Simulator. By separating the planning part of the agent from the low-level control and vehicle dynamics systems, the described architecture permits the inclusion of powerful, previously developed components in a straightforward way; in the present application, agents use Soar to reason about their actions. This paper gives an overview of the structures of the agents, and of the entire system, describes the components and their implementations, and discusses the current state of the project and plans for the future.
Technical Paper

An Evaluation of Airbag Tank-Test Results

1998-02-23
980864
The evaluation of the performance of a particular inflator for the design of the entire airbag system is typically carried out by examining the pressure pattern in a standard tank test. This study assesses the adequacy of the tank test as a true measure of the likely performance of the actual inflator-airbag system. Theoretical arguments, numerical experiments, and physical experiments show that the time rate of pressure change may be an appropriate measure to evaluate performance of a specific type of inflator, particularly if variations in the inflator design maintain the same working gas components. However, when evaluating and comparing the dynamic behavior between different types of inflators, the time rate of pressure change provides useful but incomplete information.
Technical Paper

An Experiment-Based Model of Fabric Heat Transfer and Its Inclusion in Air Bag Deployment Simulations

1999-03-01
1999-01-0437
A numerical model is presented that is capable of isolating and quantifying the heat flux from the gas within the bag to the air bag fabric due to internal surface convection during the inflator discharge period of an air bag deployment. The model is also capable of predicting the volume averaged fabric temperatures during the air bag deployment period. Implementation of the model into an air bag deployment code, namely Inflator Simulation Program (ISP), is presented along with the simulation results for typical inflators. The predicted effect of the heat loss from the bag gas to the fabric on the internal bag gas temperature and pressure and the resulting bulk fabric temperature as a function of fabric parameters and the inflator exit gas properties are presented for both permeable and impermeable air bag fabrics.
Technical Paper

An Experimental Investigation of Transient Heat Losses to Tank Wall During the Inflator Tank Test

1998-09-29
982326
A series of inflator tank tests was carried out to determine the amount of transient heat losses to the tank wall during these tests. The time history data of tank wall temperature, and tank interior gas temperature and pressure, were measured. The tank wall temperature data were analyzed using an inverse heat conduction method to generate the transient heat loss fluxes from the tank gas to the tank wall. The validity of the results are discussed along with the physical reasoning and experimental observations. This is the first part of an effort in a research project to develop a comprehensive heat transfer model to predict the transient heat losses to the tank wall during the inflator tank test.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Analysis of Passenger Car Side Impacts - Crash Location, Injuries, AIS and Contacts

1992-02-01
920353
NASS 80-88 passenger side impacts data were analyzed. Location of primary car damage using the CDC classification, the AIS for injury severity studies, and the interior contacts of the various body areas. Drivers alone, or with passengers were studied separately in both left and right side crashes. Direct impacts to the passenger compartment only are less frequent than to other CDC side zones. Driver interior contacts vary by body region but also by side impacted in the crash. The presence of an unrestrained front passenger appears to enhance driver injury level in left side crashes but the presence of a passenger, in right side crashes appears to moderate driver injury severity.
Research Report

Automated Vehicles: A Human/Machine Co-learning Perspective

2022-04-27
EPR2022009
Automated vehicles (AVs)—and the automated driving systems (ADSs) that enable them—are increasing in prevalence but remain far from ubiquitous. Progress has occurred in spurts, followed by lulls, while the motor transportation system learns to design, deploy, and regulate AVs. Automated Vehicles: A Human/Machine Co-learning Experience focuses on how engineers, regulators, and road users are all learning about a technology that has the potential to transform society. Those engaged in the design of ADSs and AVs may find it useful to consider that the spurts and lulls and stakeholder tussles are a normal part of technology transformations; however, this report will provide suggestions for effective stakeholder engagement. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Automotive Nuclear-Heat Engines and Associated High-Temperature Materials

1957-01-01
570036
APPLICATION of nuclear energy for civilian automotive uses has possibilities, these authors say. Nuclear power for automotive applications, they feel, is technically feasible now where size and weight are not prime considerations; where size and weight are major parameters, discoveries of new materials for construction of nuclear-power reactors must be made. New materials are needed for reactor fuels, heat extractants, neutron reflectors, reactor construction materials, controls, and radiation shields which must have unique nuclear properties in addition to conventional engineering properties. This paper presents nuclear automotive propulsion devices in terms of technologies now available. The necessary radiation-shielding mass and weight requirements are presented for an ideal point-source nuclear-heat-power engine.
Technical Paper

Balance Maintenance during Seated Reaches of People with Spinal Cord Injury

2004-06-15
2004-01-2138
In many task analyses using digital human figure models, only the terminal or apparently most stressful posture is analyzed. For reaches from a seated position, this is generally the posture with the hand or hands at the target. However, depending on the characteristics of the tasks and the people performing them, analyzing only the terminal posture could be misleading. This possibility was examined using data from a study of the reaching behavior of people with spinal cord injury. Participants performed two-handed forward reaching tasks. These reaches were to three targets located in the sagittal plane. The terminal postures did not differ significantly between those with spinal cord injury and those without. However, motion analysis demonstrated that they employed distinct strategies, particularly in the initial phase of motion.
Technical Paper

Biomechanical Properties of the Human Neck in Lateral Flexion

1975-02-01
751156
Properties of the human neck which may influence a person's susceptibility to “whiplash” injury during lateral impact have been studied in 96 normal subjects. Subjects were chosen on the basis of age, sex, and stature and data were grouped into six primary categories based on sex (F, M) and age (18-24, 35-44, 62-74). The data include: measures of head, neck and body anthropometry in standing and simulated automotive seating positions, three-dimensional range of motion of the head and neck, head/neck response to low-level acceleration, and both stretch reflex time and voluntary isometric muscle force in the lateral direction. Reflex times are found to vary from about 30 to 70 ms with young and middle aged persons having faster times than older persons, and females having faster times than males. Muscle strength decreases with age and males are, on the average, stronger than females.
Technical Paper

Blast Protection Design of a Military Vehicle System Using a Magic Cube Approach

2008-04-14
2008-01-0773
A Magic Cube (MQ) approach for crashworthiness design has been proposed in previous research [1]. The purpose of this paper is to extend the MQ approach to the blast protection design of a military vehicle system. By applying the Space Decompositions and Target Cascading processes of the MQ approach, three subsystem design problems are identified to systematize the blast protection design problem of a military vehicle. These three subsystems, including seat structure, restraint system, and under-body armor structure, are most influential to the overall blast-protective design target. The effects of a driver seat subsystem design and restraint-system subsystem design on system blast protection are investigated, along with a focused study on the under-body blast-protective structure design problem.
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

2008-04-14
2008-01-0308
The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Journal Article

Characterization of the Lateral Control Performance by Human Drivers on Highways

2008-04-14
2008-01-0561
The characterization of human drivers' performance is of great significance for highway design, driver state monitoring, and the development of automotive active safety systems. Many earlier studies are restricted by experimental scope, the number and diversity of human subjects, and the accuracy and extent of measured variables. In this work, driver lateral control performance on limited-access highways is quantified by utilizing a comprehensive naturalistic driving database, with the emphasis on measures of vehicle lateral position and time to lane crossing (TLC). Normative values at various speed ranges are reported. The results represent a statistical view of baseline on-road naturalistic driving performance, and can be used for quantitative studies such as driver impairment and alertness monitoring, the triggering of lane departure warning systems, and highway design.
X