Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

A Bayesian Approach for Aggregating Test Data Across Sub-Populations

2005-04-11
2005-01-1775
In the process of conducting a reliability analysis of a system, quite often the population of interest is not homogenous; consisting of sub-populations which arise as production operations are adjusted, component suppliers are changed, etc. While these sub-populations are each unique in many ways, they also have much in common. It is also common for data to be available from a variety of different test regimes, e.g. environmental testing and fleet maintenance observations. Hierarchical Bayesian methods provide an organized, objective means of estimating the reliability of the individual systems, the sub-population reliability as well as the reliability of the entire population. This paper provides an introduction to a Bayesian approach that can be extended for more complicated situations.
Technical Paper

A Braking Efficiency Test Technique

1975-02-01
750398
This paper provides a method whereby vehicle stopping performance can be specified, measured, and compared independently of the test surface. The method provides for an independent measure of the prevailing friction potential of the test surface which is used to normalize the measured stopping performance of the test vehicle. The concept presented is tailored toward a safety argument and toward rulemaking as a potential adaptation to braking effectiveness requirements which currently exist. A new mobile tire dynamometer, developed for this program, is discussed, as are the results of a demonstration test program.
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
Technical Paper

A Comparative Study on Sound Transmission Loss and Absorption Coefficient of Acoustical Materials

2011-05-17
2011-01-1625
Acoustical materials are widely used in automotive vehicles and other industrial applications. Two important parameters namely Sound Transmission Loss (STL) and absorption coefficient are commonly used to evaluate the acoustical performance of these materials. Other parameters, such as insertion loss, noise reduction, and loss factors are also used to judge their performance depending on the application of these materials. A systematic comparative study of STL and absorption coefficient was conducted on various porous acoustical materials. Several dozen materials including needled cotton fiber (shoddy) and foam materials with or without barrier/scrim were investigated. The results of STL and absorption coefficient are presented and compared. As expected, it was found that most of materials are either good in STL or good in absorption. However, some combinations can achieve a balance of performance in both categories.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Journal Article

A Comparison of Methods for Representing and Aggregating Uncertainties Involving Sparsely Sampled Random Variables - More Results

2013-04-08
2013-01-0946
This paper discusses the treatment of uncertainties corresponding to relatively few samples of random-variable quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse samples it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem an interesting and difficult one.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

A Control Strategy Based on Exact Linearization for Electromagnetic Valve Actuation

2007-04-16
2007-01-1596
Electromagnetic Valve Actuation (EVA) is considered to be a potential substitute of conventional valvetrains for automotive engines. However, valve quiet-seating (soft-landing) is difficult to be achieved. The EVA system and hence its’ mathematic model is nonlinear. Therefore, when linear control is used for EVA, firstly, the model has to be linearized at an equilibrium point through Taylor expansion. Consequently, the linearized model and control are valid only for a small range around the equilibrium point. This paper presents a control strategy for the whole transition of EVA, which combines exact linearization with Linear Quadratic Regulator (LQR). Firstly, the nonlinear EVA model is transformed to be linear in a new coordinate by using exact linearization, so the nonlinear model is not involved. Then the exact-linearized model is used for the EVA control with LQR.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Technical Paper

A Correlation Between Tailpipe Hydrocarbon Emissions and Driveability

1996-10-01
962023
Simultaneous tests of emissions and driveability conducted at 4.4°C on a chassis dynamometer using 10 late model vehicles showed a strong correlation between degraded driveability and increased tailpipe hydrocarbon emissions. Other regulated emissions were uncorrelated to driveability, or were small in magnitude. The 24 test gasolines were systematically varied in front-end, mid-range, and tail-end volatility and so spanned much of the moderate and high DI (driveability index) fuel region. Splash blends of 10%.vol ethanol and 15%vol MTBE blended gasolines were tested in addition to hydrocarbon gasolines.
Technical Paper

A Data-Driven Framework of Crash Scenario Typology Development for Child Vulnerable Road Users in the U.S.

2023-04-11
2023-01-0787
Motor vehicle crashes involving child Vulnerable Road Users (VRUs) remain a critical public health concern in the United States. While previous studies successfully utilized the crash scenario typology to examine traffic crashes, these studies focus on all types of motor vehicle crashes thus the method might not apply to VRU crashes. Therefore, to better understand the context and causes of child VRU crashes on the U.S. road, this paper proposes a multi-step framework to define crash scenario typology based on the Fatality Analysis Reporting System (FARS) and the Crash Report Sampling System (CRSS). A comprehensive examination of the data elements in FARS and CRSS was first conducted to determine elements that could facilitate crash scenario identification from a systematic perspective. A follow-up context description depicts the typical behavioral, environmental, and vehicular conditions associated with an identified crash scenario.
Technical Paper

A Diamond-Like Carbon Coating for Aluminum Alloy Piston/Bore Application

1996-02-01
960014
This paper examines the potential use of diamond-like carbon (DLC) on aluminum alloy pistons of internal combustion engines. Our approach is to apply a DLC coating on the piston running against an aluminum-390 bore thus eliminating the iron liners in a standard piston/bore system. Experimental data, using a pin-on-disk tribometer under unlubricated test conditions, indicate that the performance of the DLC coating against aluminum 390 exhibits superior friction resistance compared to aluminum-390 against cast iron; the latter material couple representing the materials currently being used in production for the piston/bore application. Moreover, by thermally cycling the DLC coatings we show that improved friction and wear properties can he maintained to temperatures as high as 400°C.
Technical Paper

A Distributed Control System Framework for Automotive Powertrain Control with OSEK Standard and CAN Network

1999-03-01
1999-01-1276
This paper presents a distributed control system framework for next-generation automotive control systems, in which various control units are connected with CAN bus. The framework is a software platform that performs communication between control units and invocation of application programs. The framework includes necessary functions for data transmission to meet end-to-end timing constraints in distributed control systems. Application programmers don't have to write any communication procedure but focus on developing application programs with appropriate API (Application Program Interface). The framework is based on driving force management and also OSEK, which is a standard real-time operating system (OSEK-OS) and a communication protocol (CAN) for automotive control. We are now applying our prototype framework to an adaptive cruise control system in our experimental vehicle.
Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
X