Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation

2004-03-08
2004-01-1588
Developing a new technology requires decision-makers to understand the technology's implications on an organization's objectives, which depend on user needs targeted by the technology. If these needs are common between two organizations, collaboration could result in more efficient technology development. For hybrid truck design, both commercial manufacturers and the military have similar performance needs. As the new technology penetrates the truck market, the commercial enterprise must quantify how the hybrid's superior fuel efficiency will impact consumer purchasing and, thus, future enterprise profits. The Army is also interested in hybrid technology as it continues its transformation to a more fuel-efficient force. Despite having different objectives, maximizing profit and battlefield performance, respectively, the commercial enterprise and Army can take advantage of their mutual needs.
Technical Paper

A Dual-Use Hybrid Electric Command and Control Vehicle

2001-11-12
2001-01-2775
Until recently, U.S. government efforts to dramatically reduce emissions, greenhouse gases and vehicle fuel consumption have primarily focused on passenger car applications. Similar aggressive reductions need to be extended to heavy vehicles such as delivery trucks, buses, and motorhomes. However, the wide range of torques, speeds, and powers that such vehicles must operate under makes it difficult for any current powertrain system to provide the desired improvements in emissions and fuel economy. Hybrid electric powertrains provide the most promising, near-term technology that can satisfy these requirements. This paper highlights the configuration and benefits of a hybrid electric powertrain capable of operating in either a parallel or series mode. It describes the hybrid electric components in the system, including the electric motors, power electronics and batteries.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Journal Article

A One-Way Coupled Modeling Method to Simulate Battery Pack Thermal Runaway Initiated by an External Impact

2023-04-11
2023-01-0593
There is an ongoing proliferation of electric and electrified vehicles as manufacturers seek to reduce their carbon footprint and meet the carbon reduction targets mandated by governments around the world. An ongoing challenge in electric vehicle design is the efficient and safe design of battery packs. There are significant safety challenges for lithium battery packs relating to thermal runaway, which can be initiated through overheating and internal short from defects or external damage. This work proposes a robust method to couple the mechanical damage in a battery module calculated from a dynamic model with a thermal model of the battery that includes heating from electro-chemical sources as well as Arrhenius reactions from the battery cells. The authors identify the main sources of thermal runaway initiation and propagation in an impact scenario simulating a vehicle collision. The modeling approach was developed and validated using test data.
Technical Paper

A Parallel Hybrid Drivetrain

1999-08-17
1999-01-2928
Next generation vehicles are under environmental and economic pressure to reduce emissions and increase fuel economy, while maintaining the same ride and performance characteristics of present day combustion engine automobiles. This has prompted researchers to investigate hybrid vehicles as one possible solution to this challenge. At Southwest Research Institute (SwRI), a unique parallel hybrid drivetrain was designed and prototyped. This hybrid drivetrain alleviates the disadvantages of series hybrid drivetrains by directly coupling the driving wheels to two power sources, namely an engine and an electric motor. At the same time, the design allows the engine speed to be decoupled from the vehicle speed, allowing the engine to operate at its most efficient state. This paper describes the drivetrain, its components, and the test stand that was assembled to test the parallel hybrid drivetrain.
Technical Paper

Accessory Electrification in Class 8 Tractors

2006-04-03
2006-01-0215
Fuel costs to operate large trucks have risen substantially in the last few years and, based on petroleum supply/demand curves, that trend is expected to continue for the foreseeable future. Non-propulsion or parasitic loads in a large truck account for a significant percentage of overall engine load, leading to reductions in overall vehicle fuel economy. Electrification of parasitic loads offers a way of minimizing non-propulsion engine loads, using the full motive force of the engine for propulsion and maximizing vehicle fuel economy. This paper covers the integration and testing of electrified accessories, powered by a fuel cell auxiliary power unit (APU) in a Class 8 tractor. It is a continuation of the efforts initially published in SAE paper 2005-01-0016.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Advanced Test Methods Aid in Formulating Engine Oils for Fuel Economy

2016-10-17
2016-01-2269
Chassis dynamometer tests are often used to determine vehicle fuel economy (FE). Since the entire vehicle is used, these methods are generally accepted to be more representative of ‘real-world’ conditions than engine dynamometer tests or small-scale bench tests. Unfortunately, evaluating vehicle fuel economy via this means introduces significant variability that can readily be mitigated with engine dynamometer and bench tests. Recently, improvements to controls and procedures have led to drastically improved test precision in chassis dynamometer testing. Described herein are chassis dynamometer results from five fully formulated engine oils (utilizing improved testing protocols on the Federal Test Procedure (FTP-75) and Highway Fuel Economy Test (HwFET) cycles) which not only show statistically significant FE changes across viscosity grades but also meaningful FE differentiation within a viscosity grade where additive systems have been modified.
Technical Paper

An Engine Start/Stop System for Improved Fuel Economy

2007-04-16
2007-01-1777
During city traffic or heavily congested roads, a vehicle can consume a substantial amount of fuel idling when the vehicle is stopped. Due to regulation enforcement, auto manufacturers are developing systems to increase the mileage and reduce emissions. Turning off the engine at traffic lights and regenerative braking systems are simple ways to reduce emissions and fuel consumption. In order to develop strong manufacturer and consumer interest, this type of operation needs to be automated such that the stop/start functionality requires no driver interaction and takes place without the intervention of the vehicle operator. Valeo Electrical Systems has developed such a system that replaces the OEM engine alternator with a starter/alternator driven by a standard multi-ribbed V belt. To avoid a break and dual voltage network, this system is based on a 12V electrical system using an Enhanced Power Supply.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

Analysis For A Parallel Four-Wheel Propane Electric Hybrid Vehicle

1999-08-17
1999-01-2907
This paper analyzes the hybridization of a conventionally powered light duty front wheel drive pick up truck by adding an electric motor driven rear axle. Also studied are the effects of using propane fuel instead of gasoline. This hybrid powertrain configuration can be described as a parallel hybrid electric vehicle. Supervisory power management control has been developed to best determine the proportion of load to be provided by the engine and/or electric motor. To perform these analyses, a simulation tool (computer model of the powertrain components) was developed using MATLAB/SIMULINK'. The models account for the thermal and mechanical efficiencies of the components and are designed to develop control strategies for meeting road loads with improved fuel economy and reduced emissions. Results of this study have shown that fuel economy can be improved and emissions reduced using commercially available components (motor, rear axle, and lead acid batteries).
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Analysis of a Hybrid Powertrain for Heavy Duty Trucks

1995-11-01
952585
Heavy duty trucks account for about 50 percent of the NOx burden in urban areas and consume about 20 percent of the national transportation fuel in the United States. There is a continuing need to reduce emissions and fuel consumption. Much of the focus of current work is on engine development as a stand-alone subsystem. While this has yielded impressive gains so far, further improvement in emissions or engine efficiency is unlikely in a cost effective manner. Consequently, an integrated approach looking at the whole powertrain is required. A computer model of the heavy duty truck system was built and evaluated. The model includes both conventional and hybrid powertrains. It uses a series of interacting sub-models for the vehicle, transmission, engine, exhaust aftertreatment and braking energy recovery/storage devices. A specified driving cycle is used to calculate the power requirements at the wheels and energy flow and inefficiencies throughout the drivetrain.
Technical Paper

Analysis of a SuperTurbocharged Downsized Engine Using 1-D CFD Simulation

2010-04-12
2010-01-1231
The VanDyne SuperTurbocharger (SuperTurbo) is a turbocharger with an integral Continuously Variable Transmission (CVT). By changing the gear ratio of the CVT, the SuperTurbo is able to either pull power from the crankshaft to provide a supercharging function, or to function as a turbo-compounder, where energy is taken from the turbine and given to the crankshaft. The SuperTurbo's supercharger function enhances the transient response of a downsized and turbocharged engine, and the turbo-compounding function offers the opportunity to extract the available exhaust energy from the turbine rather than opening a waste gate. Using 1-D simulation, it was shown that a 2.0-liter L4 could exceed the torque curve of a 3.2L V6 using a SuperTurbo, and meet the torque curve of a 4.2-liter V8 with a SuperTurbo and a fresh-air bypass configuration. In each case, the part-load efficiency while using the SuperTurbo was better than the baseline engine.
Technical Paper

Application of Empirical Asperity Contact Model to High Fidelity Wet Clutch System Simulations

2019-04-02
2019-01-1301
Wet clutches are complex hydrodynamic devices used in both conventional and electrified drivetrain systems. They couple or de-couple powertrain components for applications such as automatic shifting, engine disconnect and torque vectoring. Clutch engagement behaviors vary greatly, depending on design parameters and operating conditions. Because of their direct impact on vehicle drivability and fuel economy, a predictive CAE model is desired for enabling analytical design verification processes. During engagement, a wet clutch transmits torque through viscous shear and asperity contact. A conventional Coulomb’s model, which is routinely utilized in shift simulations, is inadequate to capture non-linear hydrodynamic effects for higher fidelity analysis. Extensive research has been conducted over the years to derive hydrodynamic torque transfer models based on 1D squeeze film or 3D CFD. They are typically coupled with an elastic asperity contact model for mechanical torque transfer.
Technical Paper

Application of On-Highway Emissions Technology on a Scraper Engine

1992-04-01
920923
An investigation was performed to determine the effects of applying on-highway heavy-duty diesel engine emissions reduction technology to an off-highway version of the engine. Special attention was paid to the typical constraints of fuel consumption, heat rejection, packaging and cost-effectiveness. The primary focus of the effort was NOx, reduction while hopefully not worsening other gaseous and particulate emissions. Hardware changes were limited to “bolt-on” items, thus excluding piston and combustion chamber modifications. In the final configuration, NOx was improved by 28 percent, particulates by 58 percent, CO and HC were also better and the fuel economy penalty was limited to under 4 percent. Observations are made about the effectiveness of various individual and combined strategies, and potential problems are identified.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Automatic Transmission Efficiency Characteristics and Gearbox Torque Loss Data Regression Techniques

1993-03-01
930907
This paper presents a general discussion of automatic transmission parasitic losses and efficiency characteristics. Efficiency characteristics of the three major automatic transmission components-pump, torque converter, and gearbox-and their contribution to the transmission total torque losses are examined. A data reduction method for isolating gearbox torque losses from total transmission losses is also described. The information presented is based on pump, torque converter, and transmission testing performed at SwRI for Ford Motor Company. Test data was used to perform analytical fuel economy benchmarking studies. Testing included 13 transmissions manufactured by American, European, and Japanese manufacturers for 3.0-5.8L truck applications.
X