Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Closed-Form Frequency Model of 3-Phase Inverter Drive for DC Distribution System Analysis

2002-10-29
2002-01-3232
In this paper a model of a three-phase inverter drive will be presented that is suitable for inclusion in a DC distribution system analysis. It will be shown that the drive can be accurately modeled on the electrical side by a capacitor, representing the bus capacitance of the inverter, in parallel with a current source. The current source consists of a DC component, corresponding to net power flow to and from the flywheel, plus high-frequency current harmonics generated by the operation of the switch-mode inverter. Closed-form expressions for the current harmonics can be derived by analyzing the AC currents in the electric machine and the switch-mode nature of the inverter, including the “dead-time” effect, and will be presented in the paper. Comparisons between edge-based and center-based pulse-width operation suggest that center-based PWM produces less harmonic content. It is shown that “dead-time” can have a significant effect on the harmonic content.
Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

2005-04-11
2005-01-0066
An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.
X