Refine Your Search

Topic

Author

Search Results

Technical Paper

A Method for Documenting Locations of Rib Fractures for Occupants in Real-World Crashes Using Medical Computed Tomography (CT) Scans

2006-04-03
2006-01-0250
A method has been developed to identify and document the locations of rib fractures from two-dimensional CT images obtained from occupants of crashes investigated in the Crash Injury Research Engineering Network (CIREN). The location of each rib fracture includes the vertical location by rib number (1 through 12), the lateral location by side of the thorax (inboard and outboard), and the circumferential location by five 36-degree segments relative to the sternum and spine. The latter include anterior, anterior-lateral, lateral, posterior-lateral, and posterior regions. 3D reconstructed images of the whole ribcage created from the 2D CT images using Voxar software are used to help identify fractures and their rib number. A geometric method for consistently locating each fracture circumferentially is described.
Technical Paper

A Method for Measuring the Field of View in Vehicle Mirrors

2003-03-03
2003-01-0297
A new method is presented for physically measuring drivers' field of view in rearview mirrors. A portable coordinate measurement apparatus (FARO Arm) is used to measure the mirror locations, contours, and curvature. Measurements of the driver's head and eye locations while looking into each mirror are also made. Raytracing is used to map the two- or three-dimensional field of view in each mirror. The method differentiates between monocular, binocular, and ambinocular fields of view, and can account for head movements. This method has been applied to passenger cars, light trucks, and heavy trucks to document how drivers aim their mirrors during normal use.
Technical Paper

A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development

2009-06-09
2009-01-2261
This study outlines a protocol for image data collection acquired from human volunteers. The data set will serve as the foundation of a consolidated effort to develop the next generation full-body Finite Element Analysis (FEA) models for injury prediction and prevention. The geometry of these models will be based off the anatomy of four individuals meeting extensive prescreening requirements and representing the 5th and 50th percentile female, and the 50th and 95th percentile male. Target values for anthropometry are determined by literature sources. Because of the relative strengths of various modalities commonly in use today in the clinical and engineering worlds, a multi-modality approach is outlined. This approach involves the use of Computed Tomography (CT), upright and closed-bore Magnetic Resonance Imaging (MRI), and external anthropometric measurements.
Technical Paper

A Pilot Study of Occupant Accommodation and Seat Belt Fit for Law Enforcement Officers

2016-04-05
2016-01-1504
Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
Technical Paper

ASPECT: The Next-Generation H-Point Machine and Related Vehicle and Seat Design and Measurement Tools

1999-03-01
1999-01-0962
The ASPECT program was conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools. This paper presents a summary of the objectives, methods, and results of the program. The primary goal of ASPECT was to create a new generation of the SAE J826 H-point machine. The new ASPECT manikin has an articulated torso linkage, revised seat contact contours, a new weighting scheme, and a simpler, more user-friendly installation procedure. The ASPECT manikin simultaneously measures the H-point location, seat cushion angle, seatback angle, and lumbar support prominence of a seat, and can be used to make measures of seat stiffness. In addition to the physical manikin, the ASPECT program developed new tools for computer-aided design (CAD) of vehicle interiors. The postures and positions of hundreds of vehicle occupants with a wide range of body size were measured in many different vehicle conditions.
Technical Paper

ATD Positioning Based on Driver Posture and Position

1998-11-02
983163
Current ATD positioning practices depend on seat track position, seat track travel range, and design seatback angle to determine appropriate occupant position and orientation for impact testing. In a series of studies conducted at the University of Michigan Transportation Research Institute, driver posture and position data were collected in forty-four vehicles. The seat track reference points currently used to position ATDs (front, center, and rear of the track) were found to be poor predictors of the average seat positions selected by small female, midsize male, and large male drivers. Driver-selected seatback angle was not closely related to design seatback angle, the measure currently used to orient the ATD torso. A new ATD Positioning Model was developed that more accurately represents the seated posture and position of drivers who match the ATD statures.
Technical Paper

Anthropometric and Postural Variability: Limitations of the Boundary Manikin Approach

2000-06-06
2000-01-2172
Human figure models are commonly used to facilitate ergonomic assessments of vehicle driver stations and other workplaces. One routine method of workstation assessment is to conduct a suite of ergonomic analyses using a family of boundary manikins, chosen to represent a range of anthropometric extremes on several dimensions. The suitability of the resulting analysis depends both on the methods by which the boundary manikins are selected and on the methods used to posture the manikins. The automobile driver station design problem is used to examine the relative importance of anthropometric and postural variability in ergonomic assessments. Postural variability is demonstrated to be nearly as important as anthropometric variability when the operator is allowed a substantial range of component adjustment. The consequences for boundary manikin procedures are discussed, as well as methods for conducting accurate and complete assessments using the available tools.
Technical Paper

Anthropometry for WorldSID A World-Harmonized Midsize Male Side Impact Crash Dummy

2000-06-19
2000-01-2202
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Research Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.
Technical Paper

Automobile Occupant Posture Prediction for Use with Human Models

1999-03-01
1999-01-0966
A new method of predicting automobile occupant posture is presented. The Cascade Prediction Model approach combines multiple independent predictions of key postural degrees of freedom with inverse kinematics guided by data-based heuristics. The new model, based on posture data collected in laboratory mockups and validated using data from actual vehicles, produces accurate posture predictions for a wide range of passenger car interior geometries. Inputs to the model include vehicle package dimensions, seat characteristics, and occupant anthropometry. The Cascade Prediction Model was developed to provide accurate posture prediction for use with any human CAD model, and is applicable to many vehicle design and safety assessment applications.
Technical Paper

Biomechanical Accident Investigation Methodology Using Analytical Techniques

1983-10-17
831609
The purpose of this paper is to describe a combination of state-of-the-art detailed accident investigation procedures, computerized vehicle crash and occupant modeling, and biomechanical analysis of human injury causation into a method for obtaining enhanced biomechanical data from car crashes. Four accident cases, out of eighteen investigated, were selected for detailed reconstruction. Three were frontal impacts while the fourth was lateral. The CRASH II and MVMA 2-D analytical models were used in the reconstruction process. Occupant motions, force interactions with vehicle components, accelerations on the various body segments, and much other information was produced in the simulation process and is reported in this paper along with scene and injury data from the accidents.
Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Car Crashes and Non-Head Impact Cervical Spine Injuries in Infants and Children

1992-02-01
920562
The effects of child safety seats have been well documented in the medical literature. Scattered throughout the medical literature are individual case reports of cervical injury to children restrained in child restraint systems. A review of the literature is provided identifying previous documented cases. The authors also provide new case details of children with cervical spine injury without head contact. An overview of the growth of the infant and specific details in the cervical spine that may contribute to significant cervical injury without head impact is presented.
Technical Paper

Cervical Spine Geometry in the Automotive Seated Posture: Variations with Age, Stature, and Gender

2004-11-01
2004-22-0014
In the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 “normal” adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects’ cervical spines and heads were taken with the subjects seated in a simulated automotive neutral posture, as well as with their necks in full-voluntary flexion and full-voluntary extension. Although the cervical spine and lower head geometry were previously measured manually and documented, new technologies have enabled computer digitization of the scanned x-ray images and a more comprehensive and detailed analysis of the variation in cervical spine and lower head geometry with subject age, stature, and gender. After scanning the radiographic images, 108 skeletal landmarks on the cervical vertebrae and 10 head landmarks were digitized.
Technical Paper

Challenges in Frontal Crash Protection of Pregnant Drivers Based on Anthropometric Considerations

1999-03-01
1999-01-0711
Pregnant occupants pose a particular challenge to safety engineers because of their different anthropometry and the additional “occupant within the occupant.” A detailed study of the anthropometry and seated posture of twentytwo pregnant drivers over the course of their pregnancies was conducted. Subjects were tested in an adjustable seating buck that could be configured to different vehicle package geometries with varying belt anchorage locations. Each subject was tested four times over the course of her pregnancy to examine changes in seat positioning, seated anthropometry, and positioning of the lap and shoulder belts with gestational age. Data collected include preferred seating positions of pregnant drivers, proximity of the pregnant occupant to the steering wheel and airbag module, contours of the subjects’ torsos and abdomens relative to seat-belt centerline contours, and subject perceptions of their seated posture and proximity to vehicle components.
Technical Paper

Characterization of Driver Seatbelt Donning Behavior

2002-03-04
2002-01-0783
Improvements in the accessibility and ease of use of seatbelts require an understanding of driver belt donning behavior. Participants in a study of driving posture were videotaped as they put on their belts in their own vehicles, either an SUV or a midsize sedan. The participants were unaware that the purpose of the videotaping was related to the seatbelt. Videos from 95 men and women were analyzed to identify several categories of belt-donning behavior and to analyze the influence of body dimensions. The results have applicability to seatbelt system design, including the use of human figure models to assess seatbelt accessibility.
Technical Paper

Characterizing the Road-Damaging Dynamics of Truck Tandem Suspensions

1993-11-01
932994
The road damage caused by heavy trucks is accentuated by the dynamic loads excited by roughness in the road. Simulation models of trucks are used to predict dynamic wheel loads, but special models are required for tandem suspensions. Parameter values to characterize tandem suspension systems can be measured quasi-statically on a suspension measurement facility, but it is not known how well they fit dynamic models. The dynamic behavior of leaf-spring and air-spring tandem suspensions were measured on a hydraulic road simulator using remote parameter characterization techniques. The road simulator tests were duplicated with computer simulations of these suspensions based on quasi-static parameter measurements to compare dynamic load performance. In the case of the walking-beam suspension, simulated performance on the road was compared to experimental test data to evaluate the ability of the walking-beam model to predict dynamic load.
Technical Paper

Child Injuries & Fatalities - Who is Behind the Wheel?

2001-03-05
2001-01-1305
Recent crash data was used to evaluate the safety performance of drivers who transport children. The age difference between drivers and children was found to be an important predictor of crash-related driving behavior and choices. Also, certain driver behaviors and choices when transporting children were identified as creating elevated risk. This study provides information that parents might use to reduce risk when their children are riding with other drivers. The results may also be of interest to professionals concerned with graduated licensing and the establishment and enforcement of laws relating to child endangerment such as drinking and driving with child passengers.
Technical Paper

Comparison of Child Body Dimensions with Rear Seat Geometry

2006-04-03
2006-01-1142
Children who are too large for harness restraints but too small to obtain good restraint from a vehicle seatbelt alone should be seated in a belt-positioning booster. Boosters have been shown to significantly reduce abdominal injuries caused by seatbelts. This effectiveness may be due in part to the fact that boosters reduce the effective seat cushion length, allowing children to sit more comfortably without slouching. NHTSA recommends that children who do not use harness restraints use boosters until they are at least 145 cm tall. In this paper, data from several sources were combined to assess how well children fit on rear seat cushions. Data from NASS-GES were analyzed to determine the age distribution of rear-seat occupants. Anthropometric data from several sources were analyzed to determine the distribution of buttock-popliteal length, a measure of thigh length that is a key determinant of seat fit, as a function of age and gender.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

2000-06-06
2000-01-2180
Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
Technical Paper

Comparison of Occupant Restraints Based on Injury-Producing Contact Rates

1994-11-01
942219
The objective of this analysis is to evaluate the effectiveness of restraints in preventing injury-producing contacts of specific body regions, such as the head or chest, with specific interior components. In order to make comparisons by restraint use, an injury rate is calculated as the number of injury-producing contacts per hundred involved occupants. Data, including the Occupant Injury Classification (OIC), are from the 1988-92 National Accident Sampling System (NASS) Crashworthiness Data System (CDS). The analysis presented is limited to passenger vehicle drivers in towaway, frontal impacts. Injury-producing contact rates are compared for four restraint configurations: unrestrained, three-point belted, driver airbag alone, and driver airbag plus three-point belt. For each restraint configuration, contact rates are compared by three categories of injury severity, AIS 1, AIS 2, and AIS 3-6, body region injured, and contact area producing the injury.
X