Refine Your Search

Topic

Author

Search Results

Technical Paper

A Case Study in Remote Connectivity to Automotive Communication Networks

2001-03-05
2001-01-0069
This paper describes a case study led by Science Applications International Corporation (SAIC) of Dayton, OH USA and Dearborn Group Inc. to prove the feasibility of employing Telematics technologies to the vehicle test and measurement industry. Many test functions can be automated through the use of secure wireless technologies. For example, vehicle data can be dynamically monitored on the vehicle and data meeting pre-determined criteria could be downloaded via the wireless communications center. Additionally, central, real-time wireless monitoring of vehicle fleets provides the vehicle fleet manager with the ability to manage multiple tests simultaneously, thus improving efficiencies and potentially reducing manpower costs and compressing test schedules.
Technical Paper

A Modular Designed Three-phase ~98%-Efficiency 5kW/L On-board Fast Charger for Electric Vehicles Using Paralleled E-mode GaN HEMTs

2017-03-28
2017-01-1697
Most of the present electric vehicle (EV) on-board chargers utilize a conventional design, i.e., a boost-type Power Factor Correction (PFC) controller followed by an isolated DC/DC converter. Such design usually yields a ~94% wall-to-battery efficiency and 2~3kW/L power density at most, which makes a high-power charger, e.g., 20kW module difficult to fit in the vehicle. As described in this paper, first, an E-mode GaN HEMT based 7.2kW single-phase charger was built. Connecting three such modules to the three-phase grid allows a three-phase >20kW charger to be built, which compared to the conventional three-phase charger, saves the bulky DC-bus capacitor by using the indirect matrix converter topology. To push the efficiency and power density to the limit, comprehensive optimization is processed to optimize the single-phase module through incorporating the GaN HEMT switching performance and securing its zero-voltage switching.
Technical Paper

A Rear Spoiler of a New Type that Reduces the Aerodynamic Forces on a Mini-Van

2006-04-03
2006-01-1631
The Low Mass Vehicle (LMV) that is a minivan designed to compete with the Toyota Echo but with 30% less mass has been used for the research in the Institute for Advanced Vehicle Systems. To reduce the aerodynamic forces on the LMV, the present authors have developed a rear spoiler of a new type based on the principles of fluid dynamics and through numerical computations. This new spoiler has been developed in such a way that the aerodynamic drag as well as lift on vehicles having a bluff back can be reduced when the new spoiler is attached to them. Numerical simulations show that the aerodynamic drag and lift on the LMV moving at 30 m/s reduce by 5 % and more than 100 %, respectively, when the new spoiler is attached to it.
Technical Paper

A Transportable Instrumentation Package for In-Vehicle On-Road Data Collection for Driver Research

2013-04-08
2013-01-0202
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
Technical Paper

A Value Analysis Tool for Automotive Interior Door Trim Panel Materials and Process Selection

2007-04-16
2007-01-0453
This paper describes a computerized value analysis tool (VAT) developed to aid automotive interior designers, engineers and planners to achieve the high levels of perceived quality of materials used in automotive door trim panels. The model requires a number of inputs related to types of materials, their manufacturing processes and customer perceived quality ratings, costs and importance of materials, features located in different areas of the door trim panel, etc. It allows the user to conduct iterative evaluation of total cost, total weighted customer perceived quality ratings, and estimates of perceived value (perceived quality divided by cost) for different door trim areas as well as the entire door trim panel. The VAT, thus, allows value and cost management related to materials and processing choices for automotive interiors.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Behavior of Adhesive Lap Joints in Aluminum Tubes for Crashworthy Structures

2022-03-29
2022-01-0873
Tubular sections are found in many automotive structural components such as front rails, cross beams, and sub-frames. They are also used in other vehicular structures, such as buses and rails. In many of these components, smaller tubular sections may be joined together using an adhesive to build the required structure. For crash safety applications, it is important that the joined tube sections be able to provide high energy absorption capability and withstand the impact load before the adhesive bond failure occurs. In this study, single lap tubular joints between two aluminum tubes are investigated for their crush performance at both quasi-static and high impact speeds using finite element analysis. A crash optimized adhesive Betamate 1496 is considered. The joint parameters, such as adhesive overlap length, tube diameters and tube lengths, are varied to determine their effects on energy absorption, peak and mean loads, and tube deformation mode.
Technical Paper

Commonality and Differences between Cruiser, Sport, and Touring Motorcycles: An Ergonomics Study

2007-04-16
2007-01-0438
This paper presents results of two surveys, namely, a photographic measurements survey and a rider survey, conducted to determine how the type and origin of a motorcycle related to motorcycle dimensions, rider characteristics, seating posture, and motorcycle controls and displays. In the photographic survey, 12 most popular motorcycles covering three types (cruiser, sport, and touring) and three origins (Europe, Asia and North America) were measured from photographs taken in a standardized procedure with and without a rider. The data showed that the Asian and North American cruisers were very similar in all dimensions. These include seat height, seat to handlebar location, seat to foot rest location, foot rest size, and handgrip stance. This resulted in similar rider posture. North American sport motorcycles were more like cruisers than the Asian and European sport motorcycles.
Technical Paper

Correlation between Sensor Performance, Autonomy Performance and Fuel-Efficiency in Semi-Truck Platoons

2021-04-06
2021-01-0064
Semi-trucks, specifically class-8 trucks, have recently become a platform of interest for autonomy systems. Platooning involves multiple trucks following each other in close proximity, with only the lead truck being manually driven and the rest being controlled autonomously. This approach to semi-truck autonomy is easily integrated on existing platforms, reduces delivery times, and reduces greenhouse gas emissions via fuel economy benefits. Level 1 SAE fuel studies were performed on class-8 trucks operating with the Auburn Cooperative Adaptive Cruise Control (CACC) system, and fuel savings up to 10-12% were seen. Enabling platooning autonomy required the use of radar, global positioning systems (GPS), and wireless vehicle-to-vehicle (V2V) communication. Poor measurements and state estimates can lead to incorrect or missing positioning data, which can lead to unnecessary dynamics and finally wasted fuel.
Technical Paper

Crash Performance of Steel, Aluminum and Carbon Fiber Composite Bumper Beams with Steel Crush Cans

2021-04-06
2021-01-0286
In frontal collision of vehicles, the front bumper system is the first structural member that receives the energy of collision. In low speed impacts, the bumper beam and the crush cans that support the bumper beam are designed to protect the engine and the radiator from being damaged, while at high speed impacts, they are required to transfer the energy of impact as uniformly as possible to the front rails that contributes to the occupant protection. The bumper beam material today is mostly steels and aluminum alloys, but carbon fiber composites have the potential to reduce the bumper weight significantly. In this study, crash performance of bumper beams made of a boron steel, aluminum alloy 5182 and a carbon fiber composite with steel crush cans is examined for their maximum deflection, load transfer to crush cans, total energy absorption and failure modes using finite element analysis.
Technical Paper

Development of Innovative Design Concepts for Automotive Center Consoles

2006-04-03
2006-01-1474
The objective of the paper is to present a unique design approach and its outputs: the design concepts for automotive center consoles for a near term SUV that can be produced in 2-3 years, and the second for, a more futuristic SUV, that could be produced in 10 or more years. In the first phase of this two phase project, we benchmarked center consoles from a number of existing and concept vehicles, analyzed available data (e.g. J.D. Power customer feedback surveys), and conducted studies (e.g. survey of items stored in the vehicles, item location preferences in the console area) to understand customer/user needs in designing the center consoles. In the second phase, we provided the information generated in the first phase to four groups of student teams who competed to create winning designs of the center consoles.
Technical Paper

Development of a Parametric Model for Advanced Vehicle Design

2004-03-08
2004-01-0381
This paper describes a research project currently in-progress to develop a parametric model of a vehicle for use in early design stages of a new vehicle program. The model requires key input parameters to define the kind of new vehicle to be designed — in terms of details such as its intended driver/user population, vehicle type (e.g. 2-box, 3-box designs), and some key exterior and interior dimensions related to its size and proportions. The model computes and graphically displays interior package, ergonomics zones for driver controls and displays, and field of views through window openings. It also allows importing or inputting and superimposing and manipulating exterior surfaces created by a designer to assess compatibility between the interior occupant package and the vehicle exterior.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Technical Paper

Effect of Vehicle Body Style on Vehicle Entry/Exit Performance and Preferences of Older and Younger Drivers

2002-03-04
2002-01-0091
This paper presents results of a study conducted to determine differences in older (over age 55) and younger (under age 35), male and female drivers while entering and exiting vehicles with three different body styles - namely, a large sedan, a minivan and a full-size pick-up truck. Thirty-six drivers (males and females, ages 25 to 89 years) who participated in this study were first measured for their anthropometric, strength and body flexibility measures relevant to the entry/exit tasks. They were asked to first get in each vehicle and adjust their preferred seating position. Then, they were asked to get in the vehicle and their entry time was measured. Their entry maneuver was also video taped and they were asked to rate the level of ease/difficulty (using a 5-point scale) in entering. Similar procedure and measurements were conducted during their exit from each vehicle.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Graduate Education in Manufacturing Engineering for the Automotive Industry of the Future

1999-05-10
1999-01-1638
This paper discusses the evolution of graduate education in manufacturing engineering and the curriculum needed to educate manufacturing engineers in the automotive industry. This paper examines the master's and doctoral curriculum in manufacturing engineering at the University of Michigan-Dearborn. Finally, it proposes future direction for graduate education in manufacturing that will be needed for the automotive industry of the future.
Technical Paper

How the University of Michigan-Dearborn Prepares Engineering Graduates for Careers in Automotive Systems Engineering

2010-10-19
2010-01-2327
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
Technical Paper

Independent Control of All-Wheel-Drive Torque Distribution

2004-05-04
2004-01-2052
The sophistication of all-wheel-drive technology is approaching the point where the drive torque to each wheel can be independently controlled. This potentially offers vehicle handling enhancements similar to those provided by Dynamic Stability Control, but without the inevitable reduction in vehicle acceleration. Independent control of all-wheel-drive torque distribution would therefore be especially beneficial under acceleration close to the limit of stability. A vehicle model of a typical sports sedan was developed in Simulink, with fully independent control of torque distribution. Box-Behnken experimental design was employed to determine which torque distribution parameters have the greatest impact on the vehicle course and acceleration. A proportional-integral control strategy was implemented, applying yaw rate feedback to vary the front-rear torque distribution, and lateral acceleration feedback to adjust the left-right distribution.
Technical Paper

Interior Design Process for UM-D's Low Mass Vehicle

2004-03-08
2004-01-1709
This paper describes a unique interior design and multidisciplinary process implemented by the faculty and students to develop the interior for a Low Mass Vehicle (LMV). The 103 inch LMV was designed with the goal of about 30% reduction in weight than a typical class C segment vehicle and would require low investment in manufacturing. In the early stages of the program, the UM-Dearborn team developed detailed requirements of the vehicle interior based on the vehicle's exterior developed using a similar process. The requirements were given to a senior class of automotive design students from the College of Creative Studies in Detroit to create different interior design themes. Approximately twenty-five interior design themes were judged by a panel of automotive industry experts, and a winning design was selected.
Technical Paper

Investigation and Benchmarking for Vehicle Floor Coverings

2003-05-05
2003-01-1575
A systematic benchmarking study was performed to investigate the acoustic performance of production floor coverings (i.e. carpets) of vehicles. A larger number of passenger cars including compact, mid-size, full size, and a truck were selected. The floor coverings were removed from these vehicles and evaluated both on absorption and sound transmission loss (STL) performances. The methodology used and the experimental results are presented in this paper. It was discovered that the design of the carpet is more important than the materials used. In addition, a carpet with highest absorption does not necessarily have the best STL and vice versa. However, an optimum design could achieve high performance in both categories.
X