Refine Your Search

Topic

Search Results

Technical Paper

A Transportable Instrumentation Package for In-Vehicle On-Road Data Collection for Driver Research

2013-04-08
2013-01-0202
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
Technical Paper

A Value Analysis Tool for Automotive Interior Door Trim Panel Materials and Process Selection

2007-04-16
2007-01-0453
This paper describes a computerized value analysis tool (VAT) developed to aid automotive interior designers, engineers and planners to achieve the high levels of perceived quality of materials used in automotive door trim panels. The model requires a number of inputs related to types of materials, their manufacturing processes and customer perceived quality ratings, costs and importance of materials, features located in different areas of the door trim panel, etc. It allows the user to conduct iterative evaluation of total cost, total weighted customer perceived quality ratings, and estimates of perceived value (perceived quality divided by cost) for different door trim areas as well as the entire door trim panel. The VAT, thus, allows value and cost management related to materials and processing choices for automotive interiors.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Behavior of Adhesive Lap Joints in Aluminum Tubes for Crashworthy Structures

2022-03-29
2022-01-0873
Tubular sections are found in many automotive structural components such as front rails, cross beams, and sub-frames. They are also used in other vehicular structures, such as buses and rails. In many of these components, smaller tubular sections may be joined together using an adhesive to build the required structure. For crash safety applications, it is important that the joined tube sections be able to provide high energy absorption capability and withstand the impact load before the adhesive bond failure occurs. In this study, single lap tubular joints between two aluminum tubes are investigated for their crush performance at both quasi-static and high impact speeds using finite element analysis. A crash optimized adhesive Betamate 1496 is considered. The joint parameters, such as adhesive overlap length, tube diameters and tube lengths, are varied to determine their effects on energy absorption, peak and mean loads, and tube deformation mode.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

2002-06-03
2002-01-1891
This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Technical Paper

Crash Performance of Steel, Aluminum and Carbon Fiber Composite Bumper Beams with Steel Crush Cans

2021-04-06
2021-01-0286
In frontal collision of vehicles, the front bumper system is the first structural member that receives the energy of collision. In low speed impacts, the bumper beam and the crush cans that support the bumper beam are designed to protect the engine and the radiator from being damaged, while at high speed impacts, they are required to transfer the energy of impact as uniformly as possible to the front rails that contributes to the occupant protection. The bumper beam material today is mostly steels and aluminum alloys, but carbon fiber composites have the potential to reduce the bumper weight significantly. In this study, crash performance of bumper beams made of a boron steel, aluminum alloy 5182 and a carbon fiber composite with steel crush cans is examined for their maximum deflection, load transfer to crush cans, total energy absorption and failure modes using finite element analysis.
Technical Paper

Development of a Parametric Model for Advanced Vehicle Design

2004-03-08
2004-01-0381
This paper describes a research project currently in-progress to develop a parametric model of a vehicle for use in early design stages of a new vehicle program. The model requires key input parameters to define the kind of new vehicle to be designed — in terms of details such as its intended driver/user population, vehicle type (e.g. 2-box, 3-box designs), and some key exterior and interior dimensions related to its size and proportions. The model computes and graphically displays interior package, ergonomics zones for driver controls and displays, and field of views through window openings. It also allows importing or inputting and superimposing and manipulating exterior surfaces created by a designer to assess compatibility between the interior occupant package and the vehicle exterior.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Formability Analysis of Thermoplastic Lightweight Fiber-Metal Laminates

2006-04-03
2006-01-0118
This study investigates numerically and experimentally the formability of two Fiber-Metal Laminate systems based on a thermoplastic self-reinforced polypropylene and a glass fiber polypropylene composite materials. These hybrid systems consist of layered arrangements of aluminum 2024-T3 sheets and thermoplastic-based composite materials. Flat panels were manufactured using a fast one step cold press manufacturing procedure. Punch-stretch forming tests and numerical simulations were performed in order to evaluate the formability of the hybrid systems. Experimental and simulation results revealed that the self reinforced thermoplastic composite-based Fiber-Metal Laminate exhibit excellent forming properties similar to that of the monolithic aluminum alloy of comparable thickness.
Technical Paper

Formability of Aluminum Tailor-Welded Blanks

2000-03-06
2000-01-0772
The use of tailor welded blanks (TWBs) in automotive applications is increasing due to the potential of weight and cost savings. These blanks are manufactured by joining two or more sheets of dissimilar gauge, properties, or both, to form a lighter blank of desired strength and stiffness. This allows an engineer to “tailor” the properties of the blank to meet the design requirements of a particular panel. TWBs are used in such places as door inner panels, lift gates, and floor pans. Earlier investigations of the use of TWBs targeted steel alloys, but the potential of further weight savings with aluminum TWBs is gaining interest in the automotive industry. Unlike steel TWBs, the welds in aluminum TWBs are not significantly stronger than the base material and are occasionally the fracture site. Additionally, the reduced formability of aluminum, as compared with drawing-quality steels, makes the application of aluminum TWBs more difficult than steel TWBs.
Technical Paper

Formability of Ti-TWBs at Elevated Temperatures

2006-04-03
2006-01-0353
In this paper, the formability of Ti-TWBs at different elevated temperatures is experimentally investigated. Ti-TWBs made of Ti-6Al-4V sheets with thicknesses of 0.7mm and 1.0mm are manufactured. Then, the tensile test and forming test at elevated temperatures, ranging from room temperature to 600°C, have been carried out to determine the mechanical properties and the formability of the prepared Ti-TWBs respectively. The effects of elevated temperatures on both the forming and failure behaviors of the Ti-TWBs are examined by comparing with that of the Ti-6Al-4V base metal. It is found that the formability of the Ti-TWBs at room temperature with a dissimilar thickness combination is lower than that of their base metal, whilst the formability of both the Ti-TWBs and their base metal increases with increasing forming temperature. In addition, failures have often been found at the thinner base metal during the Ti-TWB forming, provided that the quality weld is attained without defect.
Technical Paper

Graduate Education in Manufacturing Engineering for the Automotive Industry of the Future

1999-05-10
1999-01-1638
This paper discusses the evolution of graduate education in manufacturing engineering and the curriculum needed to educate manufacturing engineers in the automotive industry. This paper examines the master's and doctoral curriculum in manufacturing engineering at the University of Michigan-Dearborn. Finally, it proposes future direction for graduate education in manufacturing that will be needed for the automotive industry of the future.
Technical Paper

How the University of Michigan-Dearborn Prepares Engineering Graduates for Careers in Automotive Systems Engineering

2010-10-19
2010-01-2327
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
Technical Paper

Independent Control of All-Wheel-Drive Torque Distribution

2004-05-04
2004-01-2052
The sophistication of all-wheel-drive technology is approaching the point where the drive torque to each wheel can be independently controlled. This potentially offers vehicle handling enhancements similar to those provided by Dynamic Stability Control, but without the inevitable reduction in vehicle acceleration. Independent control of all-wheel-drive torque distribution would therefore be especially beneficial under acceleration close to the limit of stability. A vehicle model of a typical sports sedan was developed in Simulink, with fully independent control of torque distribution. Box-Behnken experimental design was employed to determine which torque distribution parameters have the greatest impact on the vehicle course and acceleration. A proportional-integral control strategy was implemented, applying yaw rate feedback to vary the front-rear torque distribution, and lateral acceleration feedback to adjust the left-right distribution.
Technical Paper

Interfacial Fracture in Environmentally Friendly Thermoplastic Composite-Metal Laminates

2006-04-03
2006-01-0117
This paper investigates the interfacial fracture properties of composite-metal laminates by using the single-cantilever beam testing technique. The hybrid systems consisted of a layer of aluminum alloy (6061 or 2024-T3) bonded to polypropylene based composites. In this study, two non-chromate surface treatments were applied to the aluminum substrates: SafeGard CC-300 Chrome free seal (from Sanchem Inc.) and TCP-HF (from Metalast International Inc.). These are environmentally friendly surface treatments that enhance the adhesion and corrosion resistance of aluminum alloys. Flat hybrid panels were manufactured using a one step cold press manufacturing procedure. Single cantilever bend specimens were cut from the panels and tested at 1mm/min. Results have shown that the CC-300 treated Al 2024-T3 alloy and Twintex exhibited higher interfacial fracture energy values.
Technical Paper

Interior Design Process for UM-D's Low Mass Vehicle

2004-03-08
2004-01-1709
This paper describes a unique interior design and multidisciplinary process implemented by the faculty and students to develop the interior for a Low Mass Vehicle (LMV). The 103 inch LMV was designed with the goal of about 30% reduction in weight than a typical class C segment vehicle and would require low investment in manufacturing. In the early stages of the program, the UM-Dearborn team developed detailed requirements of the vehicle interior based on the vehicle's exterior developed using a similar process. The requirements were given to a senior class of automotive design students from the College of Creative Studies in Detroit to create different interior design themes. Approximately twenty-five interior design themes were judged by a panel of automotive industry experts, and a winning design was selected.
Technical Paper

Investigation of Thermoforming as a Method of Manufacturing Plastic Air Intake Manifolds

2000-03-06
2000-01-0045
Current plastic intake manifolds are manufactured using the injection molding process. In this paper, thermoforming is explored as an alternative to injection molding for making intake manifold shells, which can then be joined by one of the welding techniques used for thermoplastic materials. The investigation reported here includes press-forming experiments of a simple bowl shaped shell and subsequent welding experiments to join these shells.
Technical Paper

LS-DYNA3D Simulation of Sheet Metal Forming using Damage Based User Subroutine

2001-03-05
2001-01-1129
LS-DYNA3D has been widely used to perform computer simulation of sheet metal forming. In the material library of LS-DYNA3D there are a number of user defined material models. In order to take full advantage of the material subroutines, it is important for the users to be able to display user defined history variables in the post processing and to establish user-defined failure criterion. In this report, the development of a damage coupled plastic model is firstly described. The damage model is then programmed in a user defined material subroutine. This is followed by performing finite element simulation of sheet metal forming with the LS-DYNA3D that has incorporated the damage coupled plastic model. The way to display the user defined history variables and how to deal with the failure criterion during the postprocessing of ETA/DYNAFORM are described. History variable distributions at several time steps are displayed and discussed in this paper.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Predicting Forming Limit Curve Using a New Ductile Failure Criterion

2017-03-28
2017-01-0312
Based on findings from micromechanical studies, a Ductile Failure Criterion (DFC) was proposed. The proposed DFC treats localized necking as failure and critical damage as a function of strain path and initial sheet thickness. Under linear strain path assumption, a method to predict Forming Limit Curve (FLC) is derived from this DFC. With the help of predetermined effect functions, the method only needs a calibration at uniaxial tension. The approach was validated by predicting FLCs for sixteen different aluminum and steel sheet metal materials. Comparison shows that the prediction matches quite well with experimental observations in most cases.
X