Refine Your Search

Topic

Author

Search Results

Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

A Case Study in Remote Connectivity to Automotive Communication Networks

2001-03-05
2001-01-0069
This paper describes a case study led by Science Applications International Corporation (SAIC) of Dayton, OH USA and Dearborn Group Inc. to prove the feasibility of employing Telematics technologies to the vehicle test and measurement industry. Many test functions can be automated through the use of secure wireless technologies. For example, vehicle data can be dynamically monitored on the vehicle and data meeting pre-determined criteria could be downloaded via the wireless communications center. Additionally, central, real-time wireless monitoring of vehicle fleets provides the vehicle fleet manager with the ability to manage multiple tests simultaneously, thus improving efficiencies and potentially reducing manpower costs and compressing test schedules.
Technical Paper

A Modular Designed Three-phase ~98%-Efficiency 5kW/L On-board Fast Charger for Electric Vehicles Using Paralleled E-mode GaN HEMTs

2017-03-28
2017-01-1697
Most of the present electric vehicle (EV) on-board chargers utilize a conventional design, i.e., a boost-type Power Factor Correction (PFC) controller followed by an isolated DC/DC converter. Such design usually yields a ~94% wall-to-battery efficiency and 2~3kW/L power density at most, which makes a high-power charger, e.g., 20kW module difficult to fit in the vehicle. As described in this paper, first, an E-mode GaN HEMT based 7.2kW single-phase charger was built. Connecting three such modules to the three-phase grid allows a three-phase >20kW charger to be built, which compared to the conventional three-phase charger, saves the bulky DC-bus capacitor by using the indirect matrix converter topology. To push the efficiency and power density to the limit, comprehensive optimization is processed to optimize the single-phase module through incorporating the GaN HEMT switching performance and securing its zero-voltage switching.
Technical Paper

A Real-Time Computer System for the Control of Refrigerant Flow

1997-02-24
970108
This paper presents a real-time computer system for the control of refrigerant flow in an automotive air conditioning system. This is an experimental system used to investigate the potential advantages of electronic flow control over conventional flow control (using an orifice tube or thermal expansion valve). Two features of this system are presented. First, the system organization is described. Second, the control and interface software are presented. The emphasis is on the software. The system is organized as a closed loop control system. The inputs to the controller are measurements of the refrigerant system. In particular, thermocouples are used to measure the refrigerant temperature before and after the evaporator. The analog thermocouple signals are converted to digital form by an off-the-shelf, portable, data acquisition system (DAQ). Via a parallel port link, these digital measurements are transfered to a laptop computer.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Journal Article

Accelerating In-Vehicle Network Intrusion Detection System Using Binarized Neural Network

2022-03-29
2022-01-0156
Controller Area Network (CAN), the de facto standard for in-vehicle networks, has insufficient security features and thus is inherently vulnerable to various attacks. To protect CAN bus from attacks, intrusion detection systems (IDSs) based on advanced deep learning methods, such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have been proposed to detect intrusions. However, those models generally introduce high latency, require considerable memory space, and often result in high energy consumption. To accelerate intrusion detection and also reduce memory requests, we exploit the use of Binarized Neural Network (BNN) and hardware-based acceleration for intrusion detection in in-vehicle networks. As BNN uses binary values for activations and weights rather than full precision values, it usually results in faster computation, smaller memory cost, and lower energy consumption than full precision models.
Technical Paper

An Elastoplastic Damage Coupled Analysis for Crashworthiness of Aluminum Materials

1996-02-01
960169
This paper presents a comprehensive damage model capable of predicting crash behavior of aluminum structures under varying applied loading conditions. The damage model has been implemented in a general purpose explicit nonlinear finite element code and crash analysis has been carried out for aluminum tubes. The response obtained from the finite element analysis shows a close agreement with the experimental data. The finite element program containing the proposed generalized damage model can be used to analyze aluminum structures subjected to complex service loading conditions and identify associated failure modes to assess crashworthiness.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

2008-04-14
2008-01-1446
Current die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower edges. For common automotive exterior sheet, this translates to a gap less than 0.06mm. Unfortunately, the tolerances required by such standards often exceed the capabilities of many trim dies. The objective of the research described in this paper is to study the mechanisms of burrs generation and their impact on AHSS formability in stretch flanging. Experimental results on influence of trimming conditions on the shape of the sheared surface will be combined with the results of stretching strips after trimming.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Correlation between Sensor Performance, Autonomy Performance and Fuel-Efficiency in Semi-Truck Platoons

2021-04-06
2021-01-0064
Semi-trucks, specifically class-8 trucks, have recently become a platform of interest for autonomy systems. Platooning involves multiple trucks following each other in close proximity, with only the lead truck being manually driven and the rest being controlled autonomously. This approach to semi-truck autonomy is easily integrated on existing platforms, reduces delivery times, and reduces greenhouse gas emissions via fuel economy benefits. Level 1 SAE fuel studies were performed on class-8 trucks operating with the Auburn Cooperative Adaptive Cruise Control (CACC) system, and fuel savings up to 10-12% were seen. Enabling platooning autonomy required the use of radar, global positioning systems (GPS), and wireless vehicle-to-vehicle (V2V) communication. Poor measurements and state estimates can lead to incorrect or missing positioning data, which can lead to unnecessary dynamics and finally wasted fuel.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

2002-06-03
2002-01-1891
This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Technical Paper

Crash Performance of Steel, Aluminum and Carbon Fiber Composite Bumper Beams with Steel Crush Cans

2021-04-06
2021-01-0286
In frontal collision of vehicles, the front bumper system is the first structural member that receives the energy of collision. In low speed impacts, the bumper beam and the crush cans that support the bumper beam are designed to protect the engine and the radiator from being damaged, while at high speed impacts, they are required to transfer the energy of impact as uniformly as possible to the front rails that contributes to the occupant protection. The bumper beam material today is mostly steels and aluminum alloys, but carbon fiber composites have the potential to reduce the bumper weight significantly. In this study, crash performance of bumper beams made of a boron steel, aluminum alloy 5182 and a carbon fiber composite with steel crush cans is examined for their maximum deflection, load transfer to crush cans, total energy absorption and failure modes using finite element analysis.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Technical Paper

Effect of Surface Pretreatments on Adhesive Bonding and Corrosion Resistance of AM60B, AZ31-H24, and AM30 Magnesium

2009-04-20
2009-01-0037
This study reports the performance of three different automotive magnesium substrate materials (AM60B diecastings, AZ31-H24 sheet, and AM30 extrusions), each bonded to a common aluminum reference material with two different toughened adhesives. The magnesium substrates were pretreated with six different commercial pretreatments both with and without a final fused-powder polymeric topcoat. These samples were then evaluated by comparing initial lap-shear strength to the lap-shear strength after cyclic-corrosion testing. Additionally, use of a scribe through the polymer primer permitted assessment of: 1) distance of corrosion undercutting from the scribe (filiform), and 2) percent corrosion over the area of the coupon. The results showed that the performance of each magnesium pretreatment varied on cast AM60B, sheet AZ31-H24, and extruded AM30 substrates.
Journal Article

Effect of Temperature Variation on Stresses in Adhesive Joints between Magnesium and Steel

2012-04-16
2012-01-0771
This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Formability Analysis of Thermoplastic Lightweight Fiber-Metal Laminates

2006-04-03
2006-01-0118
This study investigates numerically and experimentally the formability of two Fiber-Metal Laminate systems based on a thermoplastic self-reinforced polypropylene and a glass fiber polypropylene composite materials. These hybrid systems consist of layered arrangements of aluminum 2024-T3 sheets and thermoplastic-based composite materials. Flat panels were manufactured using a fast one step cold press manufacturing procedure. Punch-stretch forming tests and numerical simulations were performed in order to evaluate the formability of the hybrid systems. Experimental and simulation results revealed that the self reinforced thermoplastic composite-based Fiber-Metal Laminate exhibit excellent forming properties similar to that of the monolithic aluminum alloy of comparable thickness.
Technical Paper

Formability of Aluminum Tailor-Welded Blanks

2000-03-06
2000-01-0772
The use of tailor welded blanks (TWBs) in automotive applications is increasing due to the potential of weight and cost savings. These blanks are manufactured by joining two or more sheets of dissimilar gauge, properties, or both, to form a lighter blank of desired strength and stiffness. This allows an engineer to “tailor” the properties of the blank to meet the design requirements of a particular panel. TWBs are used in such places as door inner panels, lift gates, and floor pans. Earlier investigations of the use of TWBs targeted steel alloys, but the potential of further weight savings with aluminum TWBs is gaining interest in the automotive industry. Unlike steel TWBs, the welds in aluminum TWBs are not significantly stronger than the base material and are occasionally the fracture site. Additionally, the reduced formability of aluminum, as compared with drawing-quality steels, makes the application of aluminum TWBs more difficult than steel TWBs.
Technical Paper

Formability of Ti-TWBs at Elevated Temperatures

2006-04-03
2006-01-0353
In this paper, the formability of Ti-TWBs at different elevated temperatures is experimentally investigated. Ti-TWBs made of Ti-6Al-4V sheets with thicknesses of 0.7mm and 1.0mm are manufactured. Then, the tensile test and forming test at elevated temperatures, ranging from room temperature to 600°C, have been carried out to determine the mechanical properties and the formability of the prepared Ti-TWBs respectively. The effects of elevated temperatures on both the forming and failure behaviors of the Ti-TWBs are examined by comparing with that of the Ti-6Al-4V base metal. It is found that the formability of the Ti-TWBs at room temperature with a dissimilar thickness combination is lower than that of their base metal, whilst the formability of both the Ti-TWBs and their base metal increases with increasing forming temperature. In addition, failures have often been found at the thinner base metal during the Ti-TWB forming, provided that the quality weld is attained without defect.
X