Refine Your Search

Topic

Author

Search Results

Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

Application of Experimental Transfer Path Analysis and Hybrid FRF-Based Substructuring Model to SUV Axle Noise

2005-04-11
2005-01-1833
This paper describes an axle gear whine noise reduction process that was developed and applied using a combination of experimental and analytical methods. First, an experimental Transfer Path Analysis (TPA) was used to identify major noise paths. Next, modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method known as HYFEX [1]. The HYFEX model consisted of an experimental FRF representation of the frame/body and a finite element (FE) model of the driveline [2] and suspension. The FE driveline model was calibrated using experimental data. The HYFEX model was then used to simulate the axle noise reduction that would be obtained using a modified frame, prior to the availability of a prototype. Hardware testing was used as the final step in the process to confirm the results of the simulation.
Technical Paper

Assessment of a Vehicle Concept Finite-Element Model for Predicting Structural Vibration

2001-04-30
2001-01-1402
A vehicle concept finite-element model is experimentally assessed for predicting structural vibration to 50 Hz. The vehicle concept model represents the body structure with a coarse mesh of plate and beam elements, while the suspension and powertrain are modeled with a coarse mesh of rigid-links, beams, and lumped mass, damping, and stiffness elements. Comparisons are made between the predicted and measured frequency-response-functions (FRFs) and modes of (a) the body-in-white, (b) the trimmed body, and (c) the full vehicle. For the full vehicle, the comparisons are with a comprehensive set of measured FRFs from 63 tests of nominally identical vehicles that demonstrate the vehicle-to-vehicle variability of the measured FRF response.
Technical Paper

Behavior of Adhesive Lap Joints in Aluminum Tubes for Crashworthy Structures

2022-03-29
2022-01-0873
Tubular sections are found in many automotive structural components such as front rails, cross beams, and sub-frames. They are also used in other vehicular structures, such as buses and rails. In many of these components, smaller tubular sections may be joined together using an adhesive to build the required structure. For crash safety applications, it is important that the joined tube sections be able to provide high energy absorption capability and withstand the impact load before the adhesive bond failure occurs. In this study, single lap tubular joints between two aluminum tubes are investigated for their crush performance at both quasi-static and high impact speeds using finite element analysis. A crash optimized adhesive Betamate 1496 is considered. The joint parameters, such as adhesive overlap length, tube diameters and tube lengths, are varied to determine their effects on energy absorption, peak and mean loads, and tube deformation mode.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

Computational Analysis and Design to Minimize Vehicle Roof Rack Wind Noise

2005-04-11
2005-01-0602
This paper presents a study of roof rack wind noise using commercial Computational Fluid Dynamics (CFD) software. The focus is to predict the noise generated from the roof rack cross bars mounted on a realistic vehicle geometry. Design iterations are created by altering the cross bar orientation. Results from the CFD simulations include frequency spectra of Sound Pressure Level (SPL) for comparison to typical wind tunnel measurements. Aerodynamic results of body lift, drag, and transient flow visualization are also produced to support the noise data. The CFD and physical experiments compare very well with respect to tonal noise generation, tonal frequency content, and relative magnitudes. It is concluded that the CFD method is suitable for predicting relative performance, ranking design concepts, and optimizing large scale geometry parameters of vehicle roof racks in a production-engineering environment.
Technical Paper

Crash Performance of Steel, Aluminum and Carbon Fiber Composite Bumper Beams with Steel Crush Cans

2021-04-06
2021-01-0286
In frontal collision of vehicles, the front bumper system is the first structural member that receives the energy of collision. In low speed impacts, the bumper beam and the crush cans that support the bumper beam are designed to protect the engine and the radiator from being damaged, while at high speed impacts, they are required to transfer the energy of impact as uniformly as possible to the front rails that contributes to the occupant protection. The bumper beam material today is mostly steels and aluminum alloys, but carbon fiber composites have the potential to reduce the bumper weight significantly. In this study, crash performance of bumper beams made of a boron steel, aluminum alloy 5182 and a carbon fiber composite with steel crush cans is examined for their maximum deflection, load transfer to crush cans, total energy absorption and failure modes using finite element analysis.
Technical Paper

Development of a Parametric Model for Advanced Vehicle Design

2004-03-08
2004-01-0381
This paper describes a research project currently in-progress to develop a parametric model of a vehicle for use in early design stages of a new vehicle program. The model requires key input parameters to define the kind of new vehicle to be designed — in terms of details such as its intended driver/user population, vehicle type (e.g. 2-box, 3-box designs), and some key exterior and interior dimensions related to its size and proportions. The model computes and graphically displays interior package, ergonomics zones for driver controls and displays, and field of views through window openings. It also allows importing or inputting and superimposing and manipulating exterior surfaces created by a designer to assess compatibility between the interior occupant package and the vehicle exterior.
Technical Paper

Development of an Improved Cosmetic Corrosion Test By the Automotive and Aluminum Industries for Finished Aluminum Autobody Panels

2003-03-03
2003-01-1235
The Automotive Aluminum Alliance in conjunction with SAE ACAP founded a corrosion task group in 2000 with a goal to establish an in-laboratory cosmetic corrosion test for finished aluminum auto body panels, which provides a good correlation with in-service performance. Development of this test involves a number of key steps that include: (1) Establishing a reservoir of standard test materials to provide a well-defined and consistent frame of reference for comparing test results; (2) Defining a real-world performance for the reference materials through on-vehicle tests conducted in the U.S. and Canada; (3) Evaluating existing laboratory, proving ground, and outdoor tests; (4) Conducting statistically designed experiments to evaluate the effects of cyclic-test variables; (5) Comparing corrosion mechanisms of laboratory and on-vehicle tests; and (6) Conducting a round robin test program to determine the precision of the new test. Several of these key steps have been accomplished.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2005-04-11
2005-01-0542
A co-operative program initiated by the Automotive Aluminum Alliance and supported by USAMP continues to pursue the goal of establishing an in-laboratory cosmetic corrosion test for finished aluminum auto body panels that provides a good correlation with in-service performance. The program is organized as a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee. Initially a large reservoir of test materials was established to provide a well-defined and consistent specimen supply for comparing test results. A series of laboratory procedures have been conducted on triplicate samples at separate labs in order to evaluate the reproducibility of the various lab tests. Exposures at OEM test tracks have also been conducted and results of the proving ground tests have been compared to the results in the laboratory tests. Outdoor tests and on-vehicle tests are also in progress. An optical imaging technique is being utilized for evaluation of the corrosion.
Technical Paper

Development of the 2002 Buick Rendezvous Body Structure

2001-04-30
2001-01-1414
This paper documents the development of the 2002 Buick Rendezvous body structure for optimum noise & vibration performance. Accelerated vehicle development timing demanded clearly defined body structure vibration performance targets, with critical dependence on math based modeling. The 2002 Buick Rendezvous was truly a fast-to-math program enabled partially by borrowing some of its structural features from the recently launched Pontiac Aztek Competitive performance data collected for the Aztek was tailored to the Rendezvous for setting major global body structure targets. Architectural differences in overall vehicle size and body opening configuration led to adjustments in body matchboxing, bending and torsional requirements. The frequency domain “mode map” was modified to these requirements taking into account the Buick Brand Character. Computer simulation models were used exclusively to predict body structural performance.
Technical Paper

Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember

2005-04-11
2005-01-0340
Since its very beginning in 1953, Corvette has been a pioneer in light weight material applications. The new 6th generation corvette high performance Z06 model required aggressive weight savings to achieve its performance and fuel economy targets. In addition to aluminum body structure and some carbon fiber components, the decision to use a magnesium front crossmember was identified to help achieve the targets. An overview of the Structural Cast Magnesium Development (SCMD) project will be presented which will provide information on key project tasks. Project focus was to develop the science and technical expertise to manufacture and validate large structural magnesium castings, which provide a weight reduction potential of 35 percent with respect to aluminum. The die cast magnesium cradle is being produced from a Mg-Al-RE alloy, designated AE44, for high temperature creep and strength performance as well as casting ductility requirements.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Interior Design Process for UM-D's Low Mass Vehicle

2004-03-08
2004-01-1709
This paper describes a unique interior design and multidisciplinary process implemented by the faculty and students to develop the interior for a Low Mass Vehicle (LMV). The 103 inch LMV was designed with the goal of about 30% reduction in weight than a typical class C segment vehicle and would require low investment in manufacturing. In the early stages of the program, the UM-Dearborn team developed detailed requirements of the vehicle interior based on the vehicle's exterior developed using a similar process. The requirements were given to a senior class of automotive design students from the College of Creative Studies in Detroit to create different interior design themes. Approximately twenty-five interior design themes were judged by a panel of automotive industry experts, and a winning design was selected.
Technical Paper

Optimization of the Side Swing Door Closing Effort

2003-03-03
2003-01-0871
In the automotive industry, a lot of attention has been paid to the effort required for opening/closing the doors, and for a good reason. The door closing and opening effort creates an impression in the customer's mind about the engineering and quality of the vehicle even before he or she steps into it. Although this is such an important issue, the precise quantification of what constitutes a good performance target for the door opening/closing effort, has remained somewhat elusive. Thumb rules and best practices abound in the automotive industry. Some of the rules and best practices have focused on setting certain targets for the energy required to shut the door from a small open position (around 10-15 degrees). This target can be misleading. The purpose of this paper is to present an ADAMS® simulation model that includes all the different components of the door design.
Technical Paper

Optimum Design of Hood Ajar Switch For Quality

2006-04-03
2006-01-0735
The Hood ajar sensing system provides customer feedback regarding the latch positional state of hood. If the sensing system is not robust to variation due to manufacturing, thermal conditions, and assembly, diagnostic failures can result. Executing various elements of the design for six sigma process can reduce the potential for diagnostic failures. This paper presents a method for achieving quality improvements by developing transfer functions, and using them for sensitivity and variance analysis. Control parameters were optimized to minimize non-conformal situations in the presence of various noise conditions.
Technical Paper

Overhead Sliding Video Screen Monitor

2006-04-03
2006-01-1486
A novel longitudinally sliding overhead video screen monitor was developed to address consumer needs for vehicles equipped with rear seat entertainment and long length sunroofs. Long length sunroof openings in vehicles are causing engineers to mount video screen monitors in locations other than the overhead. Typically, they are mounted on the floor console or on the back of front seat head restraints. Floor console mounted video screen monitors generally do not provide a comfortable viewing distance or angle for second and third row occupants. Head restraint mounted video monitors cause issues with seat shake and two monitors adds to the vehicle cost unnecessarily. The mountable sliding video monitor assembly comprises of a video display screen, brackets for mounting the monitor, a pair of tracks that are movable with respect to each other, a series of ball bearings, and a roof mounting bracket. The inner main track is adapted for mounting the pair of tracks to the vehicle.
X