Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Bimodal Loading Test for Engine and General Purpose Air Cleaning Filters

1997-02-24
970674
The dust holding capacity of air cleaning filter depends on the size distribution of the particles. Traditional test dusts like Arizona road dust consist of a single mode of coarse particles. The purpose of this study is to evaluate the dust holding capacities of air filters with a bi-modal test dust that simulates the dust in atmospheric environments. The fine mode of the test dust consists of submicron Alumina particles that represent the fine particles in atmosphere. The coarse mode consists of traditional AC fine dust. The fine and coarse dusts are mixed in different mass ratios to simulate different atmospheric conditions. The ratios are 100% fine, 50%/50%, 25%/75%, 10%/90%, and 100% coarse. An engine air filter and a HVAC filter were studied with the bi-modal test dusts. The filter pressure drops were measured as a function of the dust loading. The results show that the flow resistance rises significantly faster as the ratio of fine to coarse fraction increases.
Journal Article

An Aerosolization Method for Characterizing Particle Contaminants in Diesel Fuel

2013-10-14
2013-01-2668
Diesel fuel injection systems are operating at increasingly higher pressure (up to 250 MPa) with smaller clearances, making them more sensitive to diesel fuel contaminants. Most liquid particle counters have difficulty detecting particles <4 μm in diameter and are unable to distinguish between solid and semi-solid materials. The low conductivity of diesel fuel limits the use of the Coulter counter. This raises the need for a new method to characterize small (<4 μm) fuel contaminants. We propose and evaluate an aerosolization method for characterizing solid particulate matter in diesel fuel that can detect particles as small as 0.5 μm. The particle sizing and concentration performance of the method were calibrated and validated by the use of seed particles added to filtered diesel fuel. A size dependent correction method was developed to account for the preferential atomization and subsequent aerosol conditioning processes to obtain the liquid-borne particle concentration.
Technical Paper

An Alternative Method for Generating Ultra-Clean Dilution Air for Engine Emissions Measurements

2007-04-16
2007-01-1111
Many engine exhaust emissions measurements require exhaust dilution. With low-emission engines, there is the possibility for contaminants in the dilution air to contribute artifacts to the emissions measurement. The objectives of this work are to discuss common methods used to clean the dilution air, to present the detailed analysis of a pressure swing adsorption (PSA) system and to compare the performance of the PSA with 2 other systems commonly used to provide dilution air for engine exhaust nanoparticle measurements. The results of the comparison are discussed in context with some emissions measurements that require exhaust dilution.
Technical Paper

An Exhaust Ionization Sensor for Detection of Late Combustion with EGR

1989-09-01
892084
In many operating regimes, exhaust gas recirculation (EGR) while maintaining MBT spark timing improves cycle efficiency in SI engines. As the level of exhaust dilution is increased, the flame speed is reduced and the combustion rate is impaired. This leads to a drop in fuel economy as EGR rates are increased beyond the optimal level. To take advantage of the efficiency benefit of EGR without incurring the penalties of late combustion, a sensor which detects late combustion is tested. The signal from an ionization sensor placed near the exhaust port has been found to correlate to combustion which continues late into the expansion stroke. It may be possible to use the output from the ion sensor to maintain the EGR at the the optimum for fuel economy.
Technical Paper

An Ionization Probe Study of Small Engine Combustion Chambers

1976-02-01
760170
Combustion characteristics of an L-head engine combustion chamber have been examined using ionization probes and piezioelectric pressure transducers. The method describes how pressure rise rates, peak pressures, mean effective pressures, and flame arrival times were recorded. The flame arrival times were then used to find the position and shape of the flame front as a function of time. The influence of spark plug location on the above parameters was then examined for two different combustion chamber shapes.
Technical Paper

Comparison and Optimization of Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectroscopy for Speciating Unburned Hydrocarbons from Diesel Low Temperature Combustion

2017-03-28
2017-01-0992
Partially premixed low temperature combustion (LTC) in diesel engines is a strategy for reducing soot and NOX formation, though it is accompanied by higher unburned hydrocarbon (UHC) emissions compared to conventional mixing-controlled diesel combustion. In this work, two independent methods of quantifying light UHC species from a diesel engine operating in early LTC (ELTC) modes were compared: Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). A sampling system was designed to capture and transfer exhaust samples for off-line GC-MS analysis, while the FT-IR sampled and quantified engine exhaust in real time. Three different ELTC modes with varying levels of exhaust gas recirculation (EGR) were implemented on a modern light-duty diesel engine. GC-MS and FT-IR concentrations were within 10 % for C2H2, C2H4, C2H6, and C2H4O. While C3H8 was identified and quantified by the FT-IR, it was not detected by the GCMS.
Technical Paper

Demonstration of Single-Fuel Reactivity Controlled Compression Ignition Using Reformed Exhaust Gas Recirculation

2018-04-03
2018-01-0262
A key challenge for the practical introduction of dual-fuel reactivity controlled compression ignition (RCCI) combustion modes in diesel engines is the requirement to store two fuels on-board. This work demonstrates that partially reforming diesel fuel into less reactive products is a promising method to allow RCCI to be implemented with a single stored fuel. Experiments were conducted using a thermally integrated reforming reactor in a reformed exhaust gas recirculation (R-EGR) configuration to achieve RCCI combustion using a light-duty diesel engine. The engine was operated at a low engine load and two reformed fuel percentages over ranges of exhaust gas recirculation (EGR) rate and main diesel fuel injection timing. Results show that RCCI-like emissions of NOx and soot were achieved load using the R-EGR configuration. It was also shown that complete fuel conversion in the reforming reactor is not necessary to achieve sufficiently low fuel reactivity for RCCI combustion.
Technical Paper

Diesel Exhaust Particle Size: Measurement Issues and Trends

1998-02-23
980525
Exhaust particle number concentrations and size distributions were measured from the exhaust of a 1995 direct injection, Diesel engine. Number concentrations ranged from 1 to 7.5×107 particles/cm3. The number size distributions were bimodal and log-normal in form with a nuclei mode in the 7-15 nm diameter range and an accumulation mode in the 30-40 nm range. For nearly all operating conditions, more than 50% of the particle number, but less than 1% of the particle mass were found in the nuclei mode. Preliminary indications are that the nuclei mode particles are solid and formed from volatilization and subsequent nucleation of metallic ash from lubricating oil additives. Modern low emission engines produce low concentrations of soot agglomerates. The absence of these agglomerates to act as sites for adsorption or condensation of volatile materials makes nucleation and high number emissions more likely.
Technical Paper

Dust Loading Behavior of Engine and General Purpose Air Cleaning Filters

1997-02-24
970676
The purpose of this study is to compare the dust loading behavior of ten filter media. The filters are used in engine air filtration, self-cleaning industrial air cleaners, building heating ventilation and cooling (HVAC), automotive cabin air filtration, air respirators, and general purpose air cleaning. Several types of filter media are tested. The filters include cellulose, synthetic (felt), glass, dual-layered glass/cellulose, mixed synthetic/glass, gradient packing glass, and electrically charged fibers. The initial pressure drops and fractional collection efficiencies as a function of particle size are reported. The filters were evaluated with two test dusts to investigate the size-dependent dust loading behavior. The two test dusts are SAE fine and submicron alumina powder (median diameter 0.25 μm). The results are analyzed and compared. It was found that the cellulose filters exhibited surface loading behavior and have the fastest growth of pressure drops.
Technical Paper

Efficacy of In-Cylinder Control of Particulate Emissions to Meet Current and Future Regulatory Standards

2014-04-01
2014-01-1597
Diesel particulate filter (DPF) technology has proven performance and reliability. However, the addition of a DPF adds significant cost and packaging constraints leading some manufacturers to design engines that reduce particulate matter in-cylinder. Such engines utilize high fuel injection pressure, moderate exhaust gas recirculation and modified injection timing to mitigate soot formation. This study examines such an engine designed to meet US EPA Interim Tier 4 standards for off-highway applications without a DPF. The engine was operated at four steady state modes and aerosol measurements were made using a two-stage, ejector dilution system with a scanning mobility particle sizer (SMPS) equipped with a catalytic stripper (CS) to differentiate semi-volatile versus solid components in the exhaust. Gaseous emissions were measured using an FTIR analyzer and particulate matter mass emissions were estimated using SMPS data and an assumed particle density function.
Technical Paper

Exploration of Dual Fuel Diesel Engine Operation with On-Board Fuel Reforming

2017-03-28
2017-01-0757
Many dual fuel technologies have been proposed for diesel engines. Implementing dual fuel modes can lead to emissions reductions or increased efficiency through using partially premixed combustion and fuel reactivity control. All dual fuel systems have the practical disadvantage that a secondary fuel storage and delivery system must be included. Reforming the primary diesel to a less reactive vaporized fuel on-board has potential to overcome this key disadvantage. Most previous research regarding on-board fuel reforming has been focused on producing significant quantities of hydrogen. However, only partially reforming the primary fuel is sufficient to vaporize and create a less volatile fuel that can be fumigated into an engine intake. At lower conversion efficiency and higher equivalence ratio, reforming reactors retain higher percentage of the inlet fuel’s heating value thus allowing for greater overall engine system efficiency.
Technical Paper

Improving Air Quality by Using Biodiesel in Generators

2004-10-25
2004-01-3032
A biodiesel / petroleum fuel blend and practical low-cost methods of emission control were sought to obtain reductions in emissions from diesel generators. Little direct testing of biodiesel in diesel-powered electric generators has been done. Laboratory and field evaluations were conducted to determine the influence of using biodiesel on diesel exhaust emissions. B20 (20% biodiesel / 80% petroleum diesel) was chosen because of previously successful studies with this blend level, and there is evidence that the NOx emissions increase that result from using B20 can be controlled using existing technology. B85 was selected because it is a “high blend,” which promised to give a large decrease in PM at the expense of a larger increase in NOx than B20, but still within the range of control with existing technology. Charge-air cooling and a fuel additive were tested as NOx controls. For PM, CO, and HC reduction, a diesel oxidation catalyst (DOC) was evaluated.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Technical Paper

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

1996-10-01
962103
Two types of in-cylinder optical probes were applied to a single cylinder CFR engine to detect knocking combustion. The first probe was integrated directly into the engine spark plug to monitor the radiation from burned gas in the combustion process. The second was built into a steel body and installed near the end gas region of the combustion chamber. It measured the radiant emission from the end gas in which knock originates. The measurements were centered in the near infrared region because thermal radiation from the combustion products was believed to be the main source of radiation from a spark ignition engine. As a result, ordinary photo detectors can be applied to the system to reduce its cost and complexity. It was found that the measured luminous intensity was strongly dependent upon the location of the optical sensor.
Technical Paper

Three-Dimensional Computations of Diesel Sprays in a Very High Pressure Chamber

1994-10-01
941896
Results of three-dimensional computations of non-vaporizing and vaporizing Diesel sprays in a very high pressure (up to 18.4 MPa without combustion) environment are presented. These pressures and corresponding density ratios of ambient gas to injected liquid are about a factor of two greater than those in current Diesel engines. The spray model incorporates a line source for drops, heat, mass and momentum exchange between the gas and liquid phases, turbulent dispersion of drops, collisions and coalescences, and drop breakup. The accuracy of the model is assessed by making comparisons of computed and measured spray penetrations. Reasonable agreement is obtained for a broad range of conditions. A scaling for time and axial distance clarifies these results.
Technical Paper

Three-Dimensional Modeling of Soot and NO in a Direct-injection Diesel Engine

1995-02-01
950608
Results of comparisons of computed and measured soot and NO in a direct-injection Diesel engine are presented. The computations are carried out using a three-dimensional model for flows, sprays and combustion in Diesel engines. Autoignition of the Diesel spray is modeled using an equation for a progress variable which measures the local and instantaneous tendency of the fuel to autoignite. High temperature chemistry is modeled using a local chemical equilibrium model coupled to a combination of laminar kinetic and turbulent characteristic times. Soot formation is kinetically controlled and soot oxidation is represented by a model which has a combination of laminar kinetic and turbulent mixing times. Soot oxidation appears to be controlled near top-dead-center by mixing and by kinetics as the exhaust is approached. NO is modeled using the Zeldovich mechanism.
X