Refine Your Search

Topic

Author

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

2 Development of Motorcycle Using Electronic Controlled Continuously Variable Transmission

2002-10-29
2002-32-1771
Recently, society has demanded better performance from motorcycle regarding comfort, fuel economy, exhaust emission, and safety, in addition to traditional performance indicators. In the development of power trains, therefore, compact and lightweight hardware with improved transmission efficiency has been introduced, along with system technologies that optimize the engine revolution speed range and reduction ratio to suit driving conditions. This approach focuses on improving overall efficiency and addressing the issues of easier drivability and greater active safety. Electronic Controlled Continuously Variable Transmission (ECCVT) with high transmission efficiency is characterized by a Dry Hybrid Belt, in addition to an electronic controlled DC motor-driven shift mechanism, and an Electronic Controlled wet multi-plates Clutch (ECC).
Technical Paper

55 Development of a Fuel Injection System for High-Performance Motorcycles

2002-10-29
2002-32-1824
In Sports Motorcycles category, fuel injection systems have been employed more popularly in recent years, and we have been also developing motorcycles introducing fuel injection systems in the category of 600cc - 1400cc displacement. Sports Motorcycles need to be controlled in a wide range from idling to over 10000rpm. Better throttle response, high power and low fuel consumption are also required. Therefore, adding to optimizations of inlet system layout, fuel injection amount, injection timing and ignition timing, the authors have applied to some models electric control devices such as SDTV (Dual Throttle Valve System) that controls intake air amount with secondary throttle valve located upstream of primary throttle valve and SET (Exhaust Tuning System) that controls exhaust pressure by opening angle of an exhaust valve installed in an exhaust pipe to improve the torque characteristics.
Technical Paper

A PC-Based Fuel and Ignition Control System Used to Map the 3-D Surfaces of Torque and Emissions Versus Air-Fuel Ratio and Ignition Timing

1994-03-01
940546
A system was designed for controlling fuel injection and ignition timing for use on a port fuel injected, gas-fueled engine. Inputs required for the system include manifold absolute pressure, manifold air temperature, a once per revolution crankshaft pulse, a once per cycle camshaft pulse, and a relative encoder pulse train to determine crank angle. A prototype card installed in the computer contains counters and discrete logic which control the timing of ignition and injection events. High current drivers used to control the fuel injector solenoids and coil primary current are optically isolated from the computer by the use of fiber optic cables. The programming is done in QuickBASIC running in real time on a 25 MHz 80486 personal computer. The system was used to control a gas-fueled spark ignition engine at various conditions to map the torque versus air-fuel ratio and ignition timing. Each surface was mapped for a given fuel flow and speed.
Technical Paper

A Simulation Model for the Saturn VUE Green Line Hybrid Vehicle

2006-04-03
2006-01-0441
In developing the 2007 Model Year Saturn VUE Green Line hybrid vehicle, a vehicle model for prediction of fuel economy and performance was developed. This model was developed in Matlab / Simulink / Stateflow by augmenting an existing conventional vehicle model to include hybrid components and controls. The generic structure and the functionalities of the model are presented. This simulation model was used for rapid concept selection and requirements balancing early in the vehicle development process. Engine usage and energy distributions are shown based on simulation results. Fuel economy breakdown was also discussed.
Technical Paper

Aggregating Technologies for Reduced Fuel Consumption: A Review of the Technical Content in the 2002 National Research Council Report on CAFE

2002-03-04
2002-01-0628
The National Research Council (NRC) recently published a report entitled “Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards” intended to help U.S. policymakers in the formulation of CAFE policy. In the Report, the NRC projects fuel consumption reductions from the application of a wide range of engine, transmission, and vehicle technologies. The Report employs a simple multiplicative method to aggregate the effects of multiple technologies on fuel consumption. In this paper, a basic energy balance calculation is used to examine the NRC results against theoretical limits. Theoretical limits are calculated using measured and simulated breakdowns of system energy losses incurred during vehicle operation on EPA driving cycles. This analysis demonstrates the inherently optimistic results produced by simple aggregation methodologies. Methods for enhancing the accuracy of the technology-aggregation process are proposed.
Technical Paper

Alternative Fuel Technologies for Heavy Duty Vehicles: Performance, Emissions, Economics, Safety, and Development Status

1993-03-01
930731
This paper summarizes the state-of-the-art of various alternative fuel technologies for heavy-duty transit applications and compares them to conventional and “ clean” diesel engines. Alternative powerplants considered include compressed natural gas (CNG), liquefied natural gas (LNG), methanol, ethanol, liquefied petroleum gas (LPG), hydrogen, and several electric technologies. The various technologies are ranked according to emissions, operating and capital costs, safety, development status, driveability, and long term fuel supply. A simple spreadsheet-based rating system is presented; it not only provides a versatile, semi-quantitative way to rank technologies using both quantitative and qualitative information, but also helps identify critical areas which limit implementation for a given application. An example is given for urban transit buses.
Journal Article

An Aerosolization Method for Characterizing Particle Contaminants in Diesel Fuel

2013-10-14
2013-01-2668
Diesel fuel injection systems are operating at increasingly higher pressure (up to 250 MPa) with smaller clearances, making them more sensitive to diesel fuel contaminants. Most liquid particle counters have difficulty detecting particles <4 μm in diameter and are unable to distinguish between solid and semi-solid materials. The low conductivity of diesel fuel limits the use of the Coulter counter. This raises the need for a new method to characterize small (<4 μm) fuel contaminants. We propose and evaluate an aerosolization method for characterizing solid particulate matter in diesel fuel that can detect particles as small as 0.5 μm. The particle sizing and concentration performance of the method were calibrated and validated by the use of seed particles added to filtered diesel fuel. A size dependent correction method was developed to account for the preferential atomization and subsequent aerosol conditioning processes to obtain the liquid-borne particle concentration.
Technical Paper

An Exhaust Ionization Sensor for Detection of Late Combustion with EGR

1989-09-01
892084
In many operating regimes, exhaust gas recirculation (EGR) while maintaining MBT spark timing improves cycle efficiency in SI engines. As the level of exhaust dilution is increased, the flame speed is reduced and the combustion rate is impaired. This leads to a drop in fuel economy as EGR rates are increased beyond the optimal level. To take advantage of the efficiency benefit of EGR without incurring the penalties of late combustion, a sensor which detects late combustion is tested. The signal from an ionization sensor placed near the exhaust port has been found to correlate to combustion which continues late into the expansion stroke. It may be possible to use the output from the ion sensor to maintain the EGR at the the optimum for fuel economy.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks

2009-05-19
2009-01-2126
When pickup trucks are driven on concrete paved freeways, freeway hop shake is a major complaint. Freeway hop shake occurs when the vehicle passes over the concrete joints of the freeway which impose in-phase harmonic road inputs. These road inputs excite vehicle modes that degrade ride comfort. The worst shake level occurs when the vehicle speed is such that the road input excites the vehicle 1st bending mode and/or the rear wheel hop mode. The hop and bending mode are very close in frequency. This phenomenon is called freeway hop shake. Automotive manufacturers are searching for ways to mitigate freeway hop shake. There are several ways to reduce the shake amplitude. This paper documents a new approach using hydraulic body mounts to reduce the shake. A full vehicle analytical model was used to determine the root cause of the freeway hop shake.
Technical Paper

Assessment of Closed-Wall Wind Tunnel Blockage using CFD

2004-03-08
2004-01-0672
Effects of the wind tunnel blockage in a closed-wall wind tunnel were investigated using computational fluid dynamics (CFD). Flow over three generic vehicle models representing a passenger sedan, a sports utility vehicle (SUV), and a pickup truck was solved. The models were placed in a baseline virtual wind tunnel as well as four additional virtual wind tunnels, each with different size cross-sections, providing different levels of wind tunnel blockage. For each vehicle model, the CFD analysis produced an aerodynamic drag coefficient for the vehicle at the blockage free condition as well as the blockage effect increment for the baseline wind tunnel. A CFD based blockage correction method is proposed. Comparisons of this method to some existing blockage correction methods for closed-wall wind tunnel are also presented.
Technical Paper

CFD Simulations for Flow Over Pickup Trucks

2005-04-11
2005-01-0547
Computational fluid dynamics (CFD) was used to simulate the flow field over a pickup truck. The simulation was based on a steady state formulation and the focus of the simulation was to assess the capabilities of the currently used CFD tools for vehicle aerodynamic development for pickup trucks. Detailed comparisons were made between the CFD simulations and the existing experiments for a generic pickup truck. It was found that the flow structures obtained from the CFD calculations are very similar to the corresponding measured mean flows. Furthermore, the surface pressure distributions are captured reasonably well by the CFD analysis. Comparison for aerodynamic drags was carried out for both the generic pickup truck and a production pickup truck. Both the simulations and the measurements show the same trends for the drag as the vehicle geometry changes, This suggests that the steady state CFD simulation can be used to aid the aerodynamic development of pickup trucks.
Technical Paper

Combustion Characteristics of a Reverse-Tumble Wall-Controlled Direct-Injection Stratified-Charge Engine

2003-03-03
2003-01-0543
Experimentally obtained combustion responses of a typical reverse-tumble wall-controlled direct-injection stratified-charge engine to operating variables are described. During stratified-charge operation, the injection timing, ignition timing, air-fuel ratio, and levels of exhaust gas recirculation (EGR) generally determine the fuel economy and emissions performance of the engine. A detailed heat-release analysis of the experimental cylinder-pressure data was conducted. It was observed that injection and ignition timings determine the thermal efficiency of the engine by controlling primarily the combustion efficiency of the stratified charge. Hence, combustion phasing is determined by a compromise between work-conversion efficiency and combustion efficiency. To reduce nitric-oxide (NOx) emissions, a reduction in overall air-fuel ratio as well as EGR addition is required.
Technical Paper

Combustion Characteristics of a Spray-Guided Direct-Injection Stratified-Charge Engine with a High-Squish Piston

2005-04-11
2005-01-1937
This work describes an experimental investigation on the stratified combustion and engine-out emissions characteristics of a single-cylinder, spark-ignition, direct-injection, spray-guided engine employing an outward-opening injector, an optimized high-squish, bowled piston, and a variable swirl valve control. Experiments were performed using two different outward-opening injectors with 80° and 90° spray angles, each having a variable injector pintle-lift control allowing different rates of injection. The fuel consumption of the engine was found to improve with decreasing air-swirl motion, increasing spark-plug length, increasing spark energy, and decreasing effective rate of injection, but to be relatively insensitive to fuel-rail pressure in the range of 10-20 MPa. At optimal injection and ignition timings, no misfires were observed in 30,000 consecutive cycles.
Technical Paper

Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids

2008-06-23
2008-01-1619
A compatibility study was conducted on fluorinated elastomers (FKM and FEPM) in various Automatic Transmission Fluids (ATF). Representative compounds from various FKM families were tested by three major FKM raw material producers - DuPont Performance Elastomers (DPE), Dyneon and Solvay. All involved FKM compounds were tested in a newly released fluid (ATF-A) side-by-side with conventional transmission fluids, at 150°C for various time intervals per ASTM D471. In order to evaluate the fluid compatibility limits, some FKM's were tested as long as 3024 hrs, which is beyond the normal service life of seals. Tensile strength and elongation were monitored as a function of ATF exposure time. The traditional dipolymers and terpolymers showed poor resistance to the new fluid (ATF-A). Both types demonstrated significant decreases in strength and elongation after extended fluid exposure at 150°C.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

Corrections for the Pressure Gradient Effect on Vehicle Aerodynamic Drag

2003-03-03
2003-01-0935
Effects of the pressure gradient in the wind tunnel test section on vehicle aerodynamic drag were investigated using computational fluid dynamics (CFD). The numerical study was used to obtain the aerodynamic drag of several vehicles in two virtual wind tunnels, one with a zero pressure gradient and another with a nonzero (but small) pressure gradient. A comparison of the vehicle aerodynamic drags in these two virtual wind tunnels, and investigation of the physical mechanisms causing these differences, have led to two correction formulas. These formulas can be used to correct for the pressure gradient effect on vehicle aerodynamic drag measurement in a wind tunnel that has a nonzero pressure gradient. In the first formula, the correction is given explicitly in terms of known variables. The correction is 80% accurate for passenger car, sports car, sports utility vehicle (SUV), and is 70% accurate for pickup truck.
Technical Paper

Correlation between Physical Properties and Autoignition Parameters of Alternate Fuels

1985-02-01
850266
The correlations between the physical properties and autoignition parameters of several alternate fuels have been examined. The fuels are DF-2 and its blends with petroleum derived fuels, coal derived fuels, shale derived fuels, high aromatic naphtha sun-flower oils, methanol and ethanol. A total of eighteen existing correlations are discussed. An emphasis is made on the suitability of each of the correlations for the development of electronic controls for diesel engines when run on alternate fuels. A new correlation has been developed between the cetane number of the fuels and its kinematic viscosity and specific gravity.
X