Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Method of Flow Measurement About Full-Scale and Model-Scale Vehicles

2000-03-06
2000-01-0871
High-frequency pressure probes were used to map the airflow around a full-scale truck during on-road testing and around a model-scale truck during wind tunnel testing. Several configurations were tested during each type of testing. Results are presented for on-road ‘pass-by’ tests and detail velocity and coefficient of pressure variation alongside the truck at different heights. The wind tunnel data are results of flow mapping about a 10% scale model and show the velocity and coefficient of pressure distribution under and around the model truck for different configurations.
Technical Paper

Air Entrainment in Gaseous Fuel Jets Using Particle Image Velocimetry and High Speed Schlieren Photography in a Constant Volume Chamber

2015-04-14
2015-01-0938
The air entrainment process of a compressed natural gas transient fuel jet was investigated in a constant-volume chamber using Schlieren and particle image velocimetry (PIV) techniques. A new method of calculating air entrainment around a gaseous fuel jet is proposed using Schlieren and PIV imaging techniques. This method offers an alternative to calculation of an alternative to calculation of entrainment using LIF technique in gaseous fuel jets. Several Jet-ambient pressure ratios were tested. In each test, nitrogen was used to fill the chamber as an air surrogate before the jet of natural gas was injected. Schlieren high speed videography and PIV experiments were performed at the same conditions. Schlieren mask images were used to accurately identify the jet boundary which was then superimposed onto a PIV image. Vectors adjacent to the Schlieren mask in the PIV image were used to calculate the spatial distribution of the air entrainment at the jet boundary.
Technical Paper

Airflow Parameters Near the Differential of a Rear Drive Passenger Car

2001-03-05
2001-01-1015
The paper presents experimental analysis of the airflow around the differential center housing of a rear drive full-scale passenger car. The study included investigation of local airflow total and static pressure, as well as surface flow visualization. Estimation of the local airflow velocity is based on the measured pressure coefficients. The experiments were carried out at different test facilities: in a climatic wind tunnel, in a full-scale wind tunnel and on-road. Influence of side wind was modeled by the yawing of the car in the full-scale wind tunnel. The results show the asymmetrical structure of the flow in both, vertical and horizontal planes. Estimated longitudinal relative local velocity decreases from maximum Vr ≈ 0.4 at the lower surface of the center housing, to about Vr ≈ 0 above the upper surface. Side wind increases airflow velocity around the center housing within the investigated yaw range ± 20°
Technical Paper

An Integrated Software Environment for UAV Missions Support

2013-09-17
2013-01-2189
This paper describes the design and development of a virtual environment conceived to support flight operations of an Unmanned Air Vehicle (UAV) used for wind mapping in the proximity of existing or planned wind farms. The virtual environment can be used in pre-flight briefings aiming to define a trajectory from a list of waypoints, to change and eventually re-plan the mission in case of intersection with no fly zones, to simulate the mission, and to preview images/videos taken from the UAV on-board cameras. During flight, the tool can be used to compute the wind speed along the trajectory by analyzing the data streaming from the UAV. The integration of Augmented Reality (AR) techniques in the flight environment provides assistance in remotely piloted landings, and allows visualizing flight and environmental information that are critical to the mission.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
Technical Paper

Setup of a 1D Model for Simulating Dynamic Behaviour of Motorcycle Forks

2009-04-20
2009-01-0226
Shock absorbers and damper systems are important parts of automobiles and motorcycles because they have effects on safety, ride comfort, and handling. In particular, for vehicle safety, shock absorber system plays a fundamental role in maintaining the contact between tire and road. Generally, to assure the best trade-off between safety and ride comfort, a fine experimental tuning on all shock absorber components is necessary. Inside a common damper system the presence of several conjugated actions made by springs, oil and pressurized air requires a significant experimental support and a great number of prototypes and test. Aimed to reduce the design and tuning phases of a damper system, it is necessary to join these phases together with a numerical modelling phase. The aim of this paper is to present the development of a mono-dimensional (1D) model for simulating dynamic behaviour of damper system.
X