Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Methodology for In-Cylinder Flow Field Evaluation in a Low Stroke-to-Bore SI Engine

2002-03-04
2002-01-1119
This paper presents a methodology for the 3D CFD simulation of the intake and compression processes of four stroke internal combustion engines.The main feature of this approach is to provide very accurate initial conditions by means of a cost-effective initialization step. Calculations are applied to a low stroke-to-bore SI engine, operated at full load and maximum engine speed. It is demonstrated that initial conditions for this kind of engines have an important influence on flow field development, particularly in terms of mean velocities close to the firing TDC. Simulation results are used to discuss the choice of a set of parameters for the flow field characterization of low stroke-to-bore engines, as well as to provide an insight into the flow patterns during the overlapping period.
Technical Paper

A New Concept of Supercharging Applied to High Speed DI Diesel Engines

2001-08-20
2001-01-2485
The supercharging system investigated in this study is made up of a traditional turbocharger, coupled with a Roots-type positive displacement compressor. An electrically actuated clutch allows the compressor to be disengaged from the engine at high speed and under partial load steady operations (such as the ones occurring in a driving cycle). This concept of supercharging has been applied to the downsizing of a reference engine (a 2.5 litre, turbocharged, four cylinder, high speed DI Diesel engine), without penalization on the maximum brake power (110 kW) and transient response. For such a purpose, a “paper” engine has been theoretically characterized. The gross engine parameters have been optimised by means of 1-D numerical simulations, using a computational model previously validated against experiments. Performances of the reference and the downsized engine have been compared, considering both steady and transient operating conditions, full and partial load.
Technical Paper

Experimental and Numerical Investigation on the EGR System of a New Automotive Diesel Engine

2000-03-06
2000-01-0224
In this paper an integrated experimental and numerical approach is applied to optimize a new 2.5l, four valve, turbocharged DI Diesel engine, developed by VM Motori. The study is focused on the EGR system. For this engine, the traditional dynamometer bench tests provided 3-D maps for brake specific fuel consumption and emissions as a function of engine speed and brake mean effective pressure. Particularly, a set of operating conditions has been considered which, according to the present European legislation, are fundamental for emissions. For these conditions, the influence of the amount of EGR has been experimentally evaluated. A computational model for the engine cycle simulation at full load has been built by using the WAVE code. The model has been set up against experiments, since an excellent agreement has been reached for all the relevant thermo-fluid-dynamic parameters. The simulation model has been used to gain a better insight on the EGR system operations.
X