Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model for the Investigation of Temperature, Heat Flow and Friction Characteristics During Engine Warm-Up

1993-04-01
931153
A computational model has been developed to support investigations of temperature, heat flow and friction characteristics, particularly in connection with warm-up behaviour. A lumped capacity model of the engine block and head, empirically derived correlations for local heat transfer and friction losses, and oil and coolant circuit descriptions form the core of the model. Validation of the model and illustrative results are reported.
Journal Article

A Novel Diagnostics Tool for Measuring Soot Agglomerates Size Distribution in Used Automotive Lubricant Oils

2014-04-01
2014-01-1479
The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates.
Journal Article

A Novel Technique for Investigating the Characteristics and History of Deposits Formed Within High Pressure Fuel Injection Equipment

2012-09-10
2012-01-1685
The recent developments in diesel fuel injection equipment coupled with the moves in the US to using ULSD and biodiesel blends has seen an increase in the number of reports from both engine manufacturers and fleet operators regarding fuel system deposit formation issues. These deposits not only form on and within the fuel injectors but they also form elsewhere in the fuel system, due to fuel recirculation. These will eventually accumulate in the fuel filters. Historically, diesel fuel system deposits have been attributed to contamination of the fuel or the degradation of the fuel with age. Such age related degradation has been attributed to oxidation of the fuel via well documented pathways, although the initiation of this process is still poorly understood. Papers at recent SAE meetings in Florence, San Antonio, Rio de Janeiro, San Diego and Kyoto have addressed many of these causes.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Technical Paper

An Enhanced Secondary Control Approach for Voltage Restoration in the DC Distribution System

2016-09-20
2016-01-1985
The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
Journal Article

Axiomatic Design of a Reconfigurable Assembly System for Primary Wing Structures

2014-09-16
2014-01-2249
Aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways. Consequently, aerospace assembly system design is a deeply complex process that requires a multi-disciplined team of engineers. Recent trends to improve manufacturing agility suggest reconfigurability as a solution to the increasing demand for improved flexibility, time-to-market and overall reduction in non-recurring costs. Yet, adding reconfigurability to assembly systems further increases operational complexity and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of Reconfigurable Assembly Systems (RAS). This paper presents a novel reconfigurable assembly system design framework (RASDF) that can be applied to wing structure assembly as well as many other RAS design problems.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Technical Paper

Correlation of Engine Heat Transfer for Heat Rejection and Warm-Up Modelling

1997-05-19
971851
A correlation for total gas-side heat transfer rate has been derived from the analysis of engine data for measured heat rejection rate, frictional dissipation, and published data on exhaust port heat transfer. The correlation is related to the form developed by Taylor and Toong, and the analysis draws on this. However, cylinder and exhaust port contributions are separated. Two empirical constants are fixed to best match predicted to measured results for heat rejection to coolant and oil cooler under steady-state conditions, and also for exhaust port heat transfer rates. The separated contributions also defined a correlation for exhaust port heat transfer rate. The description of gas-side heat transfer is suited to needs for the analysis of global thermal behaviour of engines.
Technical Paper

Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator

2022-03-08
2022-01-0055
Permanent magnet (PM) electrical machine has far-reaching impacts in aviation electrification due to the continuous development in high power density and high efficiency electrical drives. The primary barrier to acceptance of permanent magnet machines for safety-critical starter-generator systems is its low fault-tolerance capability and low reliability (for the conventional designs). This article investigates a modular triple three-phase PM starter-generator comprehensively, including the tradeoff of fault-tolerant topology, optimization design process, analysis of electromagnetic (highlight the post-fault analysis) and thermal behavior, respectively. The triple three-phase segmented topology proposed meet the fault-tolerant requirement along with complete electrical, magnetic, and thermal isolation. There would be cost penalty on the proposed topology, but it gets offset by the ease of manufacturing of coils and their insertion.
Technical Paper

Design and Modeling of a 45kW, Switched Reluctance Starter-Generator for a Regional Jet Application

2014-09-16
2014-01-2158
A 45kW, switched reluctance type, starter-generator, having a 1:4 constant power speed range has been designed as a possible candidate for a regional jet application. In the first section of this paper, a review of the major starter-generator topologies considered for the aerospace application is provided, highlighting the advantages of choosing the Switched reluctance topology for such a safety critical application. Following this, the required torque speed characteristic of the machine, along with the imposed physical constraints, in terms of cooling and outer dimensions, are also detailed. Section III provides a description of the Electromagnetic design, and challenges encountered in meeting both the low speed, peak torque node, at 8000rpm, and the high speed, high power node, at 32000rpm. The induced mechanical stresses in the rotor at such high speeds have also been evaluated and used as a material selection criterion for such a design as presented in section III.
Technical Paper

Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

2016-09-27
2016-01-2105
This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
Technical Paper

Effect of Coolant Mixture Composition on Engine Heat Rejection Rate

1996-02-01
960275
The rate of heat rejection to the coolant system of an internal combustion engine depends upon coolant composition, among other factors, because this influences the coolant side heat transfer coefficient. The correlation developed by Taylor and Toong for heat transfer rate has been modified to account for this effect. The modification retains the gas-to-coolant passage thermal resistance implicit in the original correlation. The modified correlation gives predictions in agreement with experimental data. Compared to 100% water, mixtures of 50% ethylene glycol/50% water lower heat rejection rates by typically 5% and up to 25% in the extreme. This depends upon local conditions in the coolant circuit, which can give rise to different heat transfer regimes. Application of the modified correlation is outlined and illustrated.
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Technical Paper

Exhaust System Heat Transfer and Catalytic Converter Performance

1999-03-01
1999-01-0453
Three-way catalytic converters used on spark ignition engines have performance and durability characteristics which are effected by the thermal environment in which these operate. The design of the exhaust system and the location of the catalyst unit are important in controlling the range of thermal states the catalyst is exposed to. A model of system thermal behaviour has been developed to support studies of these. The exhaust system is modelled as connected pipe and junction elements with lumped thermal capacities. Heat transfer correlations for quasi-steady and transient conditions have been investigated. The catalytic converter is treated as elemental slices in series. Exothermic heat release and heat exchange between the monolith, mat, and shell are described in the model. A similar description is applied to lean NOx trap units.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Fuel Film Evaporation and Heat Transfer in the Intake Port of an S.I. Engine

1996-05-01
961120
Surface heat transfer measurements have been taken in the intake port of a single cylinder four valve SI engine running on isooctane fuel. The objective has been to establish how fuel characteristics affect trends in surface heat transfer rates for a range of engine operating conditions. The heat transfer measurements were made using heat flux gauges bonded to the intake port surface in the region where highest rates of fuel deposition occur. The influence on heat transfer rates of the deposited fuel and its subsequent behaviour has been examined by comparing fuel-wetted and dry-surface heat transfer measurements. Heat transfer changes are consistent with trends predicted by convective mass transfer over much of the range of surface temperatures from 20°C to 100°C. Towards the upper temperature limit heat transfer reaches a maximum limited by the rate and distribution of fuel deposition.
Technical Paper

Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine

1996-02-01
960273
Surface-mounted heat flux sensors have been used in the intake port of a fuel injected, spark ignition engine to investigate heat transfer between the surface, the gas flows through the port, and fuel deposited in surface films. The engine is of a four valve per cylinder design, with a bifurcated intake port. For dry-port conditions heat transfer per cycle varies between 0 and 300 J/m2 depending on location, towards the surface at low temperatures and away from the surface at fully-warm conditions. Particular attention has been given to the changes in heat transfer rate associated with fuel deposition. Typically this is of the order of 5 kW/m2 in regions of heavy fuel deposition and varies by a factor of 2 over the period of an engine cycle. During warm-up, as coolant temperature increases from 0 to 90°C, changes in heat transfer associated with fuel deposition typically increase from 300 J/m2 to 1000 J/m2.
Technical Paper

Heat Transfer to the Combustion Chamber Walls in Spark Ignition Engines

1995-02-01
950686
The cycle-by-cycle variation of heat transferred per cycle (q) to the combustion chamber surfaces of spark ignition engines has been investigated for quasi-steady and transient conditions produced by throttle movements. The heat transfer calculation is by integration of the instantaneous value over the cycle, using the Woschni correlation for the heat transfer coefficient. By examination of the results obtained, a relatively simple correlation has been identified: This holds both for quasi-steady and transient conditions and is on a per cylinder basis. The analysis has been extended to define a heat flux distribution over the surface of the chamber. This is given by: where F(x/L) is a polynomial function, q″ is the heat transfer per cycle per unit area to head and piston crown surfaces and gives the distribution along the liner
Technical Paper

Impact of Soft Magnetic Ageing on the Performance of Aerospace Propulsion Machines

2022-03-08
2022-01-0050
Electric machines in aerospace applications are subjected to extremely high operating temperatures. This increases coercivity or decreases saturation flux density of the electrical steel resulting in increased core loss. The need for high power density and increased operating speed favours the use of thin gauge Silicon Steel (Si-Fe) and Cobalt Iron (Co-Fe) laminations for aerospace applications. Therefore, the variation in iron loss is studied for three grades of Si-Fe laminations by subjecting them to controlled ageing in laboratory. The analysis is also provided over a range of flux density and frequency to generalize the phenomenon over the operating domain. The results of ageing the laminations are in turn used to predict the degradation in performance of a 1.15 MW, 16-pole 48-slot propulsion machine for aerospace application. The degradation is estimated in terms of variation in iron loss.
Journal Article

Implementing Determinate Assembly for the Leading Edge Sub-Assembly of Aircraft Wing Manufacture

2014-09-16
2014-01-2252
The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation.
X