Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multi-Component Quantitative PLIF: Robust Engineering Measurements of Cyclic Variation in a Firing Spray-Guided Gasoline Direct Injection Engine

2008-04-14
2008-01-1073
Planar Laser-Induced Fluorescence has been widely accepted and applied to measurements of fuel concentration distributions in IC engines. The need for such measurements has increased with the introduction of Direct Injection (DI) gasoline engines, where it is critical to understand the influence of mixture inhomogeneity on ignition and subsequent combustion, and in particular the implications for cyclic variability. The apparent simplicity of PLIF has led to misunderstanding of the technique when applied to quantitative measurements of fuel distributions. This paper presents a series of engineering methods for optimizing, calibrating and referencing, which together demonstrate a quantitative measure of fuel concentration with an absolute accuracy of 10%. PLIF is widely used with single component fuels as carriers for the fluorescent tracers.
Technical Paper

Particulate Emissions from a Gasoline Homogeneous Charge Compression Ignition Engine

2007-04-16
2007-01-0209
Particulate Emissions from Homogeneous Charge Compression Ignition (HCCI) combustion are routinely assumed to be negligible. It is shown here that this is not the case when HCCI combustion is implemented in a direct injection gasoline engine. The conditions needed to sustain HCCI operation were realized using the negative valve overlap method for trapping high levels of residual exhaust gases in the cylinder. Measurements of emitted particle number concentration and electrical mobility diameter were made with a Cambustion DMS500 over the HCCI operating range possible with this hardware. Emissions of oxides of nitrogen, carbon monoxide and unburned hydrocarbons were also measured. These data are presented and compared with similar measurements made under conventional spark ignition (SI) operation in the same engine. Under both SI and HCCI operation, a significant accumulation mode was detected with particle equivalent diameters between 80 and 100 nm.
X