Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Ammonia Emissions from Combustion in Gasoline Engines

2023-10-31
2023-01-1655
Forthcoming worldwide emissions regulations will start regulating ammonia emissions from light duty vehicles. At present, most light duty vehicles are powered by gasoline spark ignition engines. Sources of ammonia emission from such engines can be in-cylinder reactions (i.e. combustion) or downstream reactions across aftertreatment devices, particularly three-way catalysts. The latter has been known to be a major source of ammonia emissions from gasoline vehicles and has been extensively investigated. The former (combustion), less so, and thus is the subject of this work. A two-zone thermodynamic spark ignition engine model with a comprehensive chemical kinetics framework (C3MechV3.3 mechanism), after being validated against experimental ammonia emissions data, is used to study ammonia formation during combustion.
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Combustion of LPG in a Spark-Ignition Engine

2004-03-08
2004-01-0974
Tax concessions promote the use of Liquefied Petroleum Gas (LPG) fuel for automotive use in Europe. Modelling of the LPG evaporation process shows the importance of drawing the liquid from the tank rather than the gas, otherwise the most volatile component (propane) is used more quickly and the composition of the remaining fuel changes. It is shown that the LPG components have similar calorific values to gasoline, however injecting the LPG as a gas into the inlet port causes a loss of volumetric efficiency and peak power. The experimental results showed: The LPG fuels have similar burn rates and optimum ignition timing to gasoline. The Lean Mixture Limit (LML) of the gaseous fuels was weaker than that for gasoline.
Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Technical Paper

Cycle-by-Cycle Variations in Exhaust Temperatures Using Thermocouple Compensation Techniques

2006-04-03
2006-01-1197
Exhaust gas temperatures in a 1.4 L, sparked ignition engine have been measured using fine wire thermocouples at different loads and speeds. However the thermocouples are not fast enough to resolve the rapid change in exhaust temperature. This paper discusses a new thermocouple compensation technique to resolve the cycle-by-cycle variations in exhaust temperature by segmentation. Simulation results show that the technique can find the lower time constants during blowdown, reducing the bias from 28 to 4%. Several estimators and model structures have been compared. The best one is the difference equation-least squares technique, which has the combined error between -4.4 to 7.6% at 60 dB signal-to-noise ratio. The compensated temperatures have been compared against combustion parameters on a cycle-by-cycle basis. The results show that the cycle-by-cycle variations of the exhaust temperatures and combustion are correlated.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Ignition System Measurement Techniques and Correlations for Breakdown and Arc Voltages and Currents

2000-03-06
2000-01-0245
The first part of the paper is a brief review of the techniques needed for measuring the voltage and current during the ignition process. These techniques have been used in test rigs and an engine to gain insights into the breakdown and subsequent discharge development. New correlations are presented for breakdown voltage as functions of spark plug gap, gas composition, temperature and pressure. The discharge voltage is affected by the flow, so an elevated pressure flow rig was used to look at the effect of flow and pressure on the discharge voltage history, with different stored energies in the ignition coil. This study led to a model for the discharge voltage history, from which it was possible to deduce the flow velocity through the spark plug gap. Finally, these techniques were applied to a single cylinder, 4-valve, pent-roof combustion chamber SI engine, for determining the cycle-by-cycle variations in velocity through the spark plug at the time of ignition.
Technical Paper

In-Cylinder Temperature Estimation from an Optical Spray-Guided DISI Engine with Color-Ratio Pyrometry (CRP)

2006-04-03
2006-01-1198
Color-ratio pyrometry (CRP) is a technique for estimating the temperature and loading of soot, based on its thermal emission spectrum. This technique is contrasted with conventional two-color pyrometry which requires absolute measurements of the radiation intensity, either at two specific wavelengths or ranges of wavelengths. CRP uses two ratios, obtained by measuring the radiation intensity for three wavelengths or wavelength bands. CRP has been implemented here by using a digital CCD camera, and full details of the calibration are reported. Because of uncertainties in the emissivity of reference sources (such as tungsten ribbon lamps, in which the emissivity depends on temperature and wavelength), then a spectroscopic calibration of the CCD camera has been used. Use of a CCD camera is not straightforward because of internal digital signal processing (DSP), so full details are given of the calibration and technique implementation.
Journal Article

Isolated Low Temperature Heat Release in Spark Ignition Engines

2023-04-11
2023-01-0235
Low temperature heat release (LTHR) has been of interest to researchers for its potential to mitigate knock in spark ignition (SI) engines and control auto-ignition in advanced compression ignition (ACI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high temperature heat release (HTHR) event by appropriately curating the in-cylinder thermal state during compression, or in the case of SI engines, timing the spark discharge late to reveal LTHR (sometimes referred to as pre-spark heat release). In this work, LTHR is demonstrated in isolation from HTHR events. Tests were run on motored single-cylinder engines and inlet air temperatures and pressures were adjusted to realise LTHR from n-heptane and iso-octane (2,2,4-trimethylpentane) without entering the HTHR regime. LTHR was observed for a lean n-heptane-air mixture at inlet temperatures ranging from 60°C to 100°C and inlet pressures of 0.9 bar (absolute).
Technical Paper

Multi-Plane PIV using Depth of Field for In-cylinder Flow Measurements

2023-04-11
2023-01-0213
Extending the planar Particle Image Velocimetry (PIV) technique to enable measurements on multiple planes simultaneously allows for some of the 3 dimensional nature of unsteady flow fields to be investigated. This requires less hardware and retains the typically higher spatial resolution of planar PIV compared to fully 3-dimensional PIV techniques. Performing multi-plane PIV measurements requires the light scattered from the different measurement planes to be distinguishable. This may be achieved by using different laser wavelengths which adds significantly to the expense and complexity of the system, by using different light sheet polarisations which is challenging for engine measurements through windows due to stress-induced birefringence, or by making alternating measurements of each plane which sacrifices the simultaneity of the flow measurement across multiple planes.
Technical Paper

Particulate Emissions from a Common Rail Fuel Injection Diesel Engine with RME-based Biodiesel Blended Fuelling Using Thermo-gravimetric Analysis

2008-04-14
2008-01-0074
Increasing biodiesel content in mineral diesel is being promoted considerably for road transportation in Europe. With positive benefits in terms of net CO2 emissions, biofuels with compatible properties to those of conventional diesel are increasingly being used in combustion engines. In comparison to standard diesel fuel, the near zero sulphur content and low levels of aromatic compounds in biodiesel fuel can have a profound effect not only on combustion characteristics but on engine-out emissions as well. This paper presents analysis of particulate matter (PM) emissions from a turbo-charged, common rail direct injection (DI) V6 Jaguar engine operating with an RME (rapeseed methyl ester) biodiesel blended with ultra low sulphur diesel (ULSD) fuel (B30 - 30% of RME by volume). Three different engine load and speed conditions were selected for the test and no modifications were made to the engine hardware or engine management system (EMS) calibration.
Technical Paper

Particulate and Hydrocarbon Emissions from a Spray Guided Direct Injection Spark Ignition Engine with Oxygenate Fuel Blends

2007-04-16
2007-01-0472
The blending of oxygenated compounds with gasoline is projected to increase because oxygenate fuels can be produced renewably, and because their high octane rating allows them to be used in substitution of the aromatic fraction in gasoline. Blending oxygenates with gasoline changes the fuels' properties and can have a profound affect on the distillation curve, both of which are known to affect engine-out emissions. In this work, the effect of blending methanol and ethanol with gasoline on unburned hydrocarbon and particulate emissions is experimentally determined in a spray guided direct injection engine. Particulate number concentration and size distribution were measured using a Cambustion DMS500. These data are presented for different air fuel ratios, loads, ignition timings and injection timings. In addition, the ASTM D86 distillation curve was modeled using the binary activity coefficients method for the fuel blends used in the experiments.
Technical Paper

Prediction of NO Emissions from Stratified Charge Spark-Ignition Engines

2002-03-04
2002-01-1139
A thermodynamic model of spark ignition engine combustion, with multiple burned gas zones, has been extended to permit the different burned gas zones to have different mixture strengths. The NO formation is predicted in each burned gas zone using the extended Zeldovich mechanism. The model has been used to study stratified charge spark ignition engine combustion, in order to investigate the influence of overall equivalence ratio and degree of stratification on the NO emissions and the engine brake specific fuel consumption. For fixed throttle operation, it is concluded that the best trade-off is with an overall weak mixture that is close to homogeneous. For maximum power output using a slightly rich of stoichiometric mixture, then the mixture should also be close to homogeneous.
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

2016-04-05
2016-01-0991
Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
Technical Paper

The Effect of Combustion Knock on the Instantaneous Heat Flux in Spark Ignition Engines

2016-04-05
2016-01-0700
Knocking combustion places a major limit on the performance and efficiency of spark ignition engines. Spontaneous ignition of the unburned air-fuel mixture ahead of the flame front leads to a rapid release of energy, which produces pressure waves that cause the engine structure to vibrate at its natural frequencies and produce an audible ‘pinging’ sound. In extreme cases of knock, increased temperatures and pressures in the cylinder can cause severe engine damage. Damage is thought to be caused by thermal strain effects that are directly related to the heat flux. Since it will be the maximum values that are potentially the most damaging, then the heat flux needs to be measured on a cycle-by-cycle basis. Previous work has correlated heat flux with the pressure fluctuations on an average basis, but the work here shows a correlation on a cycle-by-cycle basis. The in-cylinder pressure and surface temperature were measured using a pressure transducer and eroding-type thermocouple.
Technical Paper

The Effect of Non-Ideal Vapour-Liquid Equilibrium and Non-Ideal Liquid Diffusion on Multi-Component Droplet Evaporation for Gasoline Direct Injection Engines

2015-04-14
2015-01-0924
A model for the evaporation of a multi-component fuel droplet is presented that takes account of temperature dependent fuel and vapour properties, evolving droplet internal temperature distribution and composition, and enhancement to heat and mass transfer due to droplet motion. The effect on the internal droplet mixing of non-ideal fluid diffusion is accounted for. Activity coefficients for vapour-liquid equilibrium and diffusion coefficients are determined using the UNIFAC method. Both well-mixed droplet evaporation (assuming infinite liquid mass diffusivity) and liquid diffusion-controlled droplet evaporation (iteratively solving the multi-component diffusion equation) have been considered. Well-mixed droplet evaporation may be applicable with slow evaporation, for example early gasoline direct injection; diffusion-controlled droplet evaporation must be considered when faster evaporation is encountered, for example when injection is later, or when the fuel mixture is non-ideal.
Technical Paper

The Influence of Ethanol Blends on Particulate Matter Emissions from Gasoline Direct Injection Engines

2010-04-12
2010-01-0793
Particulate Matter (PM) legislation for gasoline engines and the introduction of gasoline/ethanol blends, make it important to know the effect of fuel composition on PM emissions. Tests have been conducted with fuels of known composition in both a single-cylinder engine and V8 engine with a three-way catalyst. The V8 engine used an unleaded gasoline (PURA) with known composition and distillation characteristics as a base fuel and with 10% by volume ethanol. The single-cylinder engine used a 65% iso-octane - 35% toluene mixture as its base fuel. The engines had essentially the same combustion system, with a centrally mounted 6-hole spray-guided direct injection system. Particle size distributions were recorded and these have also been converted to mass distributions. Filter samples were taken for thermo-gravimetric analysis (TGA) to give composition information. Both engines were operated at 1500 rpm under part load.
Technical Paper

The Volumetric Efficiency of Direct and Port Injection Gasoline Engines with Different Fuels

2002-03-04
2002-01-0839
A study has been undertaken with a single-cylinder engine, based on the Mitsubishi GDi combustion system, that has the option of either port injection or direct injection. Tests have been undertaken with pure fuel components (methane, iso-octane, toluene and methanol), and a representative gasoline that has also been tested with the addition of 10% methanol and 10% ethanol. The volumetric efficiency depends both on the fuel and its time and place of injection. For stoichiometric operation with unleaded gasoline, changing from port injection to direct injection led to a 9% increase in volumetric efficiency, which was improved by a further 3% when 10% methanol was blended with the gasoline. The improvements in volumetric efficiency will be used to quantify the extent of charge cooling by fuel evaporation, and these will be compared with predictions assuming the maximum possible level of fuel evaporation.
Technical Paper

Tribological Behavior of Low Viscosity Lubricants in the Piston to Bore Zone of a Modern Spark Ignition Engine

2014-10-13
2014-01-2859
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselization. There is now increased focus on approaches which give smaller but significant incremental efficiency benefits such as reducing parasitic losses due to engine friction. Fuel economy improvements which achieve this through the development of advanced engine lubricants are very attractive to vehicle manufacturers due to their favorable cost-benefit ratio. For an engine with components which operate predominantly in the hydrodynamic lubrication regime, the most significant lubricant parameter which can be changed to improve the tribological performance of the system is the lubricant viscosity.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
X