Refine Your Search

Topic

Search Results

Technical Paper

A Novel Approach for Design and Optimization of Automotive Aluminum Cross-Car Beam Assemblies

2015-04-14
2015-01-1370
Nowadays, moving toward more lightweight designs is the key goal of all major automotive industries, and they are always looking for more mass saving replacements. In this study, a new methodology for the design and optimization of cross-car beam (CCB) assemblies is proposed to obtain a more lightweight aluminum design as a substitution for the steel counterpart considering targeted performances. For this purpose, first, topology optimization on a solid aluminum geometry encompassing the entire design space should be carried out to obtain the element density distribution within the model. Reinforcing locations with high element density and eliminating those with density lower than the threshold value result in the conceptual design of the CCB. To attain the final conceptual design, the process of topology optimization and removal of unnecessary elements should be addressed in several steps.
Technical Paper

Accurate Measurement of PVT Data for PP/Gas and TPO/Gas Mixtures

2006-04-03
2006-01-0506
Foaming of a thermoplastic polyolefin (TPO) is gaining interests because of its superior mechanical properties of foamed automotive parts, such as lightweight and high performance to weight ratio, etc. In this context, understanding of the thermophysical properties of PP/gas and TPO/gas mixtures is critically important. This paper will present the newly developed experimental technique to accurately measure the swelling of PP and TPO due to gas dissolution at elevated temperatures and pressures. Our technique measures the geometry of the pendent drop accurately from the captured images to obtain the volume swelling data. It determines the boundary location of the polymer/gas sample accurately by magnifying the sample drop locally along its edge before capturing the image. The automated high-precision XY stage is chosen as the platform to control the motion of the CCD camera.
Technical Paper

Cell Nucleation and Growth Study of PP Foaming with CO2 in a Batch-Simulation System

2006-04-03
2006-01-0507
TPO is being used to make automotive parts for its number of advantages: i) low temperature flexibility and ductility, ii) excellent impact/stiffness/flow balance, iii) excellent weatherability, and iv) free-flowing pellet form for easy processing, storage, and handling. However, by foaming TPO, due to its higher rigidity-to-weigh ratio, it would offer additional advantages over the solid counterparts in terms of reduced weight, reduced material cost, and decreased fuel usage without compromising their performance. Since a major component in TPO is polypropylene (PP), understanding PP foaming behaviours is an important step towards understanding TPO foaming. For foam materials, cell density and cell size are two significant parameters that affect their material properties. In this research, we observed the cell nucleation and initial growth behaviours of PP foams blown with CO2 under various experimental conditions in a batch foaming simulation system.
Technical Paper

Durable Icephobic and Erosion Resistant Coatings Based on Quasicrystals

2023-06-15
2023-01-1455
Quasicrystalline (QC) coatings were evaluated as leading-edge protection materials for rotor craft blades. The QC coatings were deposited using high velocity oxy-fuel thermal spray and predominantly Al-based compositions. Ice adhesion, interfacial toughness with ice, wettability, topography, and durability were assessed. QC-coated sand-blasted carbon steel exhibited better performance in terms of low surface roughness (Sa ~ 0.2 μm), liquid repellency (water contact angles: θadv ~85°, θrec ~23°), and better substrate adhesion compared to stainless steel substrates. To enhance coating performance, QC-coated sand-blasted carbon steel was further exposed to grinding and polishing, followed by measuring surface roughness, wettability, and ice adhesion strength. This reduced the surface roughness of the QC coating by 75%, resulting in lower ice adhesion strengths similar to previously reported values (~400 kPa).
Technical Paper

Effect of CO2 Content on Foaming Behavior of Recyclable High-Melt-Strength PP

2006-04-03
2006-01-0336
This paper presents an experimental study on the foaming behavior of recyclable high-melt-strength (HMS) branched polypropylene (PP) with CO2 as a blowing agent. The foamability of branched HMS PP has been evaluated using a tandem foaming extruder system. The effects of CO2 and nucleating agent contents on the final foam morphology have been thoroughly investigated. The low density (i.e., 12~14 fold), fine-celled (i.e., 107–109 cells/cm3) PP foams were successfully produced using a small amount of talc (i.e., 0.8 wt%) and 5 wt% CO2.
Technical Paper

Effect of Fungal Modification on Fiber-Matrix Adhesion in Natural Fiber Reinforced Polymer Composites

2006-04-03
2006-01-0006
Natural fiber reinforced polymer composites are beginning to find their way into the commercial automotive market. But, inadequate adhesion between hydrophilic natural fibers and hydrophobic matrix materials affects the performance of the resulting composites. In this study the effect of an environmental friendly fungal treatment on the adhesion characteristics of natural fibers is investigated. Firstly, changes in acid-base characteristics of the modified hemp fibers were studied using Inverse Gas Chromatography (IGC). Afterwards, composites were prepared using Resin Transfer Molding (RTM) process and the effect of modification on performance and durability of the composites was investigated.
Technical Paper

Energy Generation and Stir Zone Dimensions in Friction Stir Spot Welds

2006-04-03
2006-01-0971
Energy generation and utilization during friction stir spot welding of Al 6061-T6 and AM50 sheet materials are investigated. The dimensions of the stir zones during plunge testing are largely unchanged when the tool rotational speed increases from 1500 RPM to 3000 RPM (for a plunge rate of 1 mm/s) and when the rate of tool penetration increases from 1 mm/s to 10 mm/s (for a tool rotational speed of 3000 RPM). The energy resulting from tool rotation is also unaffected when higher tool rotational speeds are applied. The rotating pin accounts for around 70% and 66% of the energy generated when 6.3 mm thick Al 6061-T6 and AM50 sheet materials are spot welded without the application of a dwell period. In direct contrast, the contribution made by the tool shoulder increases to around 48% (Al 6061-T6) and to 65% (AM50) when a four second long dwell period is incorporated during spot welding of 6.3 mm thick sheets.
Technical Paper

Engine Operating Parameter Effects on the Speciated Aldehyde and Ketone Emissions from a Natural Gas Fuelled Engine

1995-10-01
952500
Measurements were taken of the speciated aldehyde and ketone exhaust emissions from a modern four-cylinder engine fuelled with natural gas. The effect on these emissions of varying the engine operating parameters spark timing, exhaust gas recirculation rate, engine speed, and fuel/air equivalence ratio was examined. The influence of these operating parameters on the complete reactivity-weighted emissions with natural gas fuelling is predicted. With stoichiometric fuel/air mixtures, both the total hydrocarbons and formaldehyde emissions declined with increasing exhaust gas temperature and increasing in-cylinder residence time, suggesting that formaldehyde burn-up in the exhaust process largely controls its emissions levels. Closer examination of the aldehyde emissions shows they follow trends more like those of the non-fuel, intermediate hydrocarbon species ethane and acetylene, than like the trends of the fuel components methane and ethane.
Technical Paper

Eutectic Segregation and Cracking in AZ91 Friction Stir Spot Welds

2007-04-16
2007-01-1700
Friction stir spot welding of Mg-alloy AZ91 is investigated. The temperature cycles within the stir zone and in the TMAZ region are examined using thermocouples, which are located within the tool itself and also by locating thermocouples in drilled holes at specific locations relative to the bottom of the tool shoulder and the periphery of the rotating pin. The measured temperatures in the stir zone range from 437°C to 460°C (0.98Ts, where Ts is the solidus temperature in degrees Kelvin) in AZ91 spot welds produced using plunge rates from 2.5 and 25 mm/s. The thermal cycle within the stir zone formed during AZ91 spot welding could not be measured by locating thermocouples within the workpiece in drilled holes adjacent to the periphery of the rotating pin.
Journal Article

Finite Element Analysis of Friction-Assisted Powder Compaction Process

2012-04-16
2012-01-0051
The major disadvantage of powder metallurgy (PM) is the density gradient throughout the green powder compacts. During the compaction process, due to the existence of friction at powder-tool interfaces, the contact surfaces experience a non-uniform stress distribution having to do with variable friction coefficient and tool kinematics, consequently resulting in density gradient throughout the powder compacts. This represents a serious problem in terms of the reliability and performance of a final product, as the density gradient may contribute to a crack-defect generation during the compaction cycle, and more importantly a non-uniform compact shrinkage during the sintering process. Simulation analyses were conducted using the finite element software, MSC.Marc Mentat, and Shima and Oyane powder constitutive model, to study and suppress the causes of density gradient in the cylindrically shaped green powder compacts.
Technical Paper

Gas-Liquid and Flow Rate Distributions in Single End Tank Evaporator Plates

1996-02-01
960375
Adiabatic two-phase flow experiments have been carried out in an evaporator plate assembly which has entry and exit header vestibules on one side and a U pattern flow passage with round or cross ribbed protuberance in the channel. Over the practical flow range in common installation orientations, non-uniform distributions were found in both surface wetting on the internal walls of a single channel and the flow rates in a number of parallel channels. The poor performances of the plate surface wetting in single channel and the flow distribution in the multiple channels would severely limit the heat transfer capability of the current designs.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Kinematic Solution and Force Layout of a Roller Pump with Internal Outlets

2000-03-06
2000-01-0833
The article presents a theoretical analysis of a roller pump design and a summary of the experiments. The pump is to provide high pressure for transmission, accessory drive, and other applications. A theoretical model was built to simulate the motion of the rollers and optimize the design. An experiment was conducted to prove the simulation. The mathematical model was built within constraints of rigid body mechanics. Comprehensive kinematic and force analysis was done through differential equations of motion. Obtained quantitative relationships include, on one hand, pump geometry, speed of rotation, and discharge/suction oil pressure, and, on the other hand, torque, dynamic interaction of relatively moving parts, and kinematic parameters of the roller. The model includes dissipate forces to account for hydraulic effects. Modeling these forces is beyond mechanics of solid body and is not considered at this initial stage of research.
Technical Paper

Low-Adhesion Surface Evaluation on an Airfoil in the NRC AIWT

2023-06-15
2023-01-1447
The performance of low-adhesion surfaces in a realistic, in-flight icing environment with supercooled liquid droplets is evaluated using a NACA 0018 airfoil in the National Research Council of Canada Altitude Icing Wind Tunnel. This project was completed in collaboration with McGill University, the University of Toronto and the NRC Aerospace Manufacturing Technologies Centre in March 2022. Each collaborator used significantly different methods to produce low-adhesion surface treatments. The goal of the research program was to demonstrate if the low-adhesion surfaces reduced the energy required to de-ice or anti-ice an airfoil in an in-flight icing environment. Each collaborator had been developing their own low-adhesion surfaces, using bench tests in cold rooms and a spin rig in the wind tunnel to evaluate their performance. The most promising surface treatments were selected for testing on the airfoil.
Technical Paper

Measurement of Swelling for PP/Gas Mixtures

2005-04-11
2005-01-1672
Foaming of thermoplastic polyolefins (TPO) and thermoplastic elastomers (TPE) is gaining interest because of the lightweight and high performance to weight ratio of foamed automotive parts. Since foaming will occur mainly in the PP matrix in these PP-based automotive materials, understanding of the thermophysical properties of PP/gas mixtures is critically important. This paper will present a proposed methodology for measuring the swelling of polymer/gas mixtures. The preliminary experimental measurement of PP/N2 swelling at elevated temperatures and pressures will be discussed.
Technical Paper

Microcellular Ceramic Foams: Manufacturing and Study of Acoustical Properties

2007-05-15
2007-01-2187
A novel processing method for fabricating high porosity microcellular ceramic foams for sound absorption applications has been developed. The strategy for fabricating the ceramic foams involves: (i) forming some shapes using a mixture of preceramic polymer and expandable microspheres by a conventional ceramic forming method, (ii) foaming the compact by heating, (iii) cross-linking the foamed body, and (iv) transforming the foamed body into ceramic foams by pyrolysis. By controlling the microsphere content and that of the base elastomer, it was possible to adjust the porosity with a very high open-cell content (ranging between 43 - 95%), high microcellular cell densities (9 × 108 - 1.6 × 109 cells/cm3) and desired expansion ratios (3 - 6 folds). Sound absorption testing has been performed using ASTM C-384 standard test. The preliminary results show that ceramic foams are candidate sound absorption materials.
Technical Paper

Model Identification and Analysis of a High Performance Hydrostatic Actuation System

2000-09-11
2000-01-2619
A hydrostatic actuation system referred to as the Electro Hydraulic Actuator (EHA) has been designed and prototyped. In this paper, a mathematical model of the EHA is reviewed and analyzed. This theoretical analysis is supported by open-loop experimental results that indicate the presence of nonlinearities but at a degree that is considerably less than that of conventional hydraulic systems with servo-valves. The behavior of the system can be approximated as piece-wise linear with the damping ratio and natural frequency changing according to a piece-wise operating region. The EHA model is used in conjunction with experimentation and numerical optimization for quantifying the influence of unknown parameters in this system. A parametric model for the EHA is subsequently proposed and validated.
Journal Article

PSO-Based Multidisciplinary Design Optimization of Automotive Assemblies

2017-08-01
2017-01-9682
Widely used in automotive industry, lightweight metallic structures are a key contributor to fuel efficiency and reduced emissions of vehicles. Lightweight structures are traditionally designed through employing the material distribution techniques sequentially. This approach often leads to non-optimal designs due to constricting the design space in each step of the design procedure. The current study presents a novel Multidisciplinary Design Optimization (MDO) framework developed to address this issue. Topology, topography, and gauge optimization techniques are employed in the development of design modules and Particle Swarm Optimization (PSO) algorithm is linked to the MDO framework to ensure efficient searching in large design spaces often encountered in automotive applications. The developed framework is then further tailored to the design of an automotive Cross-Car Beam (CCB) assembly.
Technical Paper

Real-Time Measurement of Flow Quality in CCOT Systems

2002-03-04
2002-01-0508
Systematic design of mobile air-conditioning system components in R134a systems has been hampered by inaccurate knowledge of the flow quality, especially the amount of liquid returned to the compressor. The thermodynamic quality is typically used, but it is somewhat unreliable due to the large percentage of miscible compressor oil circulating with the refrigerant. A technique for measuring the flow quality in the refrigeration loop based on phase segregation and recombination has been developed and verified. The refrigerant quality has been deduced with the aid of standard sampling methods for measuring the percentage of oil in circulation. Hence, the relative contributions of all three components of the flow have been measured. The method is suitable for relative evaluation of component performance on a test stand. The method has been applied to measuring evaporator discharge quality at standard conditions and to quantifying accumulator liquid carryover.
Journal Article

Selection of Welding Parameter during Friction Stir Spot Welding

2008-04-14
2008-01-0146
The selection of parameters during friction stir spot welding of Al-alloys and Mg-alloys is discussed. The role of tool rotation speed, plunge rate, and dwell time is examined in relation to the tool heating rate,temperature, force, and torque that occur during spot welding. In order to reduce the cycle time and tool force during Al- alloy spot welding, it is necessary to increase the tool rotation speed >1500 RPM. The measured peak temperature in the stir zone is determined by the rotation speed and dwell time, and is ultimately limited by the solidus of the alloy. When tool rotation speeds >1500 RPM are employed during AZ91 Mg-alloy spot welding, the tendency for melted film formation and cracking are greatly increased.
X