Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Review Study of Methods for Lithium-ion Battery Health Monitoring and Remaining Life Estimation in Hybrid Electric Vehicles

2012-04-16
2012-01-0125
Due to the high power and energy density and also relative safety, lithium ion batteries are receiving increasing acceptability in industrial applications especially in transportation systems with electric traction such as electric vehicles and hybrid electric vehicles. In this regard, to ensure performance reliability, accurate modeling of calendar life of such batteries is a necessity. In fact, potential failure of Li-ion battery packs remains a barrier to commercialization. Battery pack life is a critical feature to warranty and maintenance planning for hybrid vehicles, and will require adaptive control systems to account for the loss in vehicle range, and loss in battery charge and discharge efficiency. Failure not only results in large replacement costs, but also potential safety concerns such as overheating or short circuiting which may lead to fires.
Technical Paper

An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software

2018-04-03
2018-01-1075
Machine learning (ML) plays an ever-increasing role in advanced automotive functionality for driver assistance and autonomous operation; however, its adequacy from the perspective of safety certification remains controversial. In this paper, we analyze the impacts that the use of ML within software has on the ISO 26262 safety lifecycle and ask what could be done to address them. We then provide a set of recommendations on how to adapt the standard to better accommodate ML.
Journal Article

Integrated Stability Control System for Electric Vehicles with In-wheel Motors using Soft Computing Techniques

2009-04-20
2009-01-0435
An electric vehicle model has been developed with four direct-drive in-wheel motors. A high-level vehicle stability controller is proposed, which uses the principles of fuzzy logic to determine the corrective yaw moment required to minimize the vehicle sideslip and yaw rate errors. A genetic algorithm has been used to optimize the parameters of the fuzzy controller. The performance of the controller is evaluated as the vehicle is driven through a double-lane-change maneuver. Preliminary results indicate that the proposed control system has the ability to improve the performance of the vehicle considerably.
Technical Paper

Modeling and Evaluation of Li-Ion Battery Performance Based on the Electric Vehicle Field Tests

2014-04-01
2014-01-1848
In this paper, initial results of Li-ion battery performance characterization through field tests are presented. A fully electrified Ford Escape that is equipped by three Li-ion battery packs (LiFeMnPO4) including an overall 20 modules in series is employed. The vehicle is in daily operation and data of driving including the powertrain and drive cycles as well as the charging data are being transferred through CAN bus to a data logger installed in the vehicle. A model of the vehicle is developed in the Powertrain System Analysis Toolkit (PSAT) software based on the available technical specification of the vehicle components. In this model, a simple resistive element in series with a voltage source represents the battery. Battery open circuit voltage (OCV) and internal resistance in charge and discharge mode are estimated as a function of the state of charge (SOC) from the collected test data.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Journal Article

Parametric Importance Analysis and Design Optimization of a Torque Converter Model Using Sensitivity Information

2012-04-16
2012-01-0808
Torque converters are used as coupling devices in automobile powertrains involving automatic transmissions. Efficient modeling of torque converters capturing various modes of operation is important for powertrain design and simulation, (Hroval and Tobler 1, Ishihara and Emori 2) optimization and control applications. Models of torque converters are available in various commercial simulation packages, Hadi et. al. 3. The information about the effect of model parameters on torque converter performance is valuable for any design operation. In this paper, a symbolic sensitivity analysis of a torque converter model will be presented. Direct differentiation (Serban and Freeman 4) is used to generate the sensitivity equations which results in equations in symbolic form. By solving the sensitivity equations, the effect of a perturbation of the model parameters on the behavior of the system is determined.
Technical Paper

Refrigeration Load Identification of Hybrid Electric Trucks

2014-04-01
2014-01-1897
This paper seeks to identify the refrigeration load of a hybrid electric truck in order to find the demand power required by the energy management system. To meet this objective, in addition to the power consumption of the refrigerator, the vehicle mass needs to be estimated. The Recursive Least Squares (RLS) method with forgetting factors is applied for this estimation. As an example of the application of this parameter identification, the estimated parameters are fed to the energy control strategy of a parallel hybrid truck. The control system calculates the demand power at each instant based on estimated parameters. Then, it decides how much power should be provided by available energy sources to minimize the total energy consumption. The simulation results show that the parameter identification can estimate the vehicle mass and refrigeration load very well which is led to have fairly accurate power demand prediction.
X