Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Measurements of Thermal Characteristics of LiFePO4 Battery

2015-04-14
2015-01-1189
A major challenge in the development of the next generation electric and hybrid electric vehicle (EV and HEV) technology is the control and management of heat generation and operating temperatures. Vehicle performance, reliability and ultimately consumer market adoption are integrally dependent on successful battery thermal management designs. In addition to this, crucial to thermal modeling is accurate thermo-physical property input. Therefore, to design a thermal management system and for thermal modeling, a designer must study the thermal characteristics of batteries. This work presents a purely experimental thermal characterization of thermo-physical properties of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration. In this research, the thermal resistance and corresponding thermal conductivity of prismatic battery materials is evaluated.
Technical Paper

Online Identification of Vehicle Driving Conditions Using Machine-Learned Clusters

2023-10-31
2023-01-1607
Modern electrified vehicles rely on drivers to manually adjust control parameters to modify the vehicle's powertrain, such as regenerative braking strength selection or drive mode selection. However, this reliance on infrequent driver input may lead to a mismatch between the selected powertrain control modifiers and the true driving environment. It is therefore advantageous for an electric vehicle's powertrain controller to make online identifications of the current driving conditions. This paper proposes an online driving condition identification scheme that labels drive cycle intervals collected in real-time based on a clustering model, with the objective of informing adaptive powertrain control strategies. HDBSCAN and K-means clustering models are fitted to a data set of drive cycle intervals representing a full range of characteristic driving conditions.
X