Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Effect of Edge Finish on Fatigue Behavior of Thin Non-oriented Electrical Steel Sheets

2023-04-11
2023-01-0803
Strict environmental regulations are driving the automotive industry toward electric vehicles as they offer zero emissions. A key component in electric vehicles is the electric motor, where the stator and rotor are manufactured from stacks of thin electrical steel sheets. The electrical steel sheets can be cut in different ways, and the cutting methods may significantly affect the fatigue strength of the component. It is important to understand the effect of the cutting processes on the fatigue properties of electrical steel to ensure there is no premature failure of the electric motor resulting from an improper cutting process. This investigation compared the effect of three different edge preparation methods (stamping, CNC machining, and waterjet cutting) on the fatigue performance of 0.27mm thick electrical steel sheets. To investigate the effect of the edge finish on fatigue behavior, surface roughness was measured for these different samples.
Technical Paper

Fatigue Behavior of Stamped Electrical Steel Sheet at Room and Elevated Temperatures

2023-04-11
2023-01-0804
Electrical steels are silicon alloyed steels that possess great magnetic properties, making them the ideal material choice for the stator and rotor cores of electric motors. They are typically comprised of laminated stacks of thin electrical steel sheets. An electric motor can reach high temperatures under a heavy load, and it is important to understand the combined effect of temperature and load on the electrical steel’s performance to ensure the long life and safety of electric vehicles. This study investigated the fatigue strength and failure behavior of a 0.27mm thick electrical steel sheet, where the samples were prepared by a stamping process. Stress-control fatigue tests were performed at both room temperature and 150°C. The S-N curve indicated a decrease in the fatigue strength of the samples at the elevated temperature compared to the room temperature by 15-25 MPa in the LCF and HCF regimes, respectively.
Technical Paper

Fatigue Life Prediction of an Automotive Chassis System with Combined Hardening Material Model

2016-04-05
2016-01-0378
The choice of an appropriate material model with parameters derived from testing and proper modeling of stress-strain response during cyclic loading are the critical steps for accurate fatigue-life prediction of complex automotive subsystems. Most materials used in an automotive substructure, like a chassis system, exhibit combined hardening behavior and it is essential to capture this behavior in the CAE model in order to accurately predict the fatigue life. This study illustrates, with examples, the strain-controlled testing of material coupons, and the calculations of material parameters from test data for the combined hardening material model used in the Abaqus solver. Stress-strain response curves and fatigue results from other simpler material models like the isotropic hardening model and the linear material model with Neuber correction are also discussed in light of the respective fatigue theories.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Technical Paper

Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet

2019-04-02
2019-01-0530
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
X