Refine Your Search

Topic

Author

Search Results

Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Technical Paper

A Novel Hybrid Technique for Thermal Analysis of Permanent Magnet Synchronous Motor Used in Electric Vehicle Application

2020-04-14
2020-01-0464
Due to high torque and power density, permanent magnet synchronous motor (PMSM) has become the most viable candidate for electric vehicle (EV) traction application. However, to obtain such high torque and power density within a compact motor structure can cause a significant temperature rise within the motor while operating. As a result of high temperature rise, permanent magnet demagnetization may even occur within the motor. Thus, PMSM is susceptible to thermal instability. Therefore, to ensure thermal stability during varying operating conditions, thermal analysis is a mandatory procedure in addition to electromagnetic analysis during the design phase of the motor. In this paper, a computationally efficient numerical finite element analysis (FEA) process has been proposed for thermal analysis of PMSM.
Technical Paper

A Semi-Empirical Model of Spark-Ignited Turbulent Flame Growth

2000-03-06
2000-01-0201
A semi-empirical turbulent flame growth model has been developed based on thermodynamic equilibrium calculations and experiments in a 125-mm cubical combustion chamber. It covers the main flame growth period from spark kernel formation until flame wall contact, including the effects of laminar flame speed, root mean square turbulence intensity, turbulent eddy size, and flame size. As expected, the combustion rate increases with increasing laminar flame speed and/or turbulence intensity. The effect of turbulent eddy scale is less obvious. For a given turbulence intensity, smaller scales produce higher instantaneous flame speed. However, turbulence of a smaller scale also decays more rapidly. Thus, for a given laminar flame speed and turbulence intensity at the time of ignition, there is an optimum turbulent eddy size which leads to the fastest combustion rate over the period considered.
Technical Paper

A Thermal Analysis of Active-flow Control on Diesel Engine Aftertreatment

2004-10-25
2004-01-3020
One-dimensional transient modeling techniques are adapted to analyze the thermal behavior of lean-burn after-treatment systems when active flow control schemes are applied. The active control schemes include parallel alternating flow, partial restricting flow, and periodic flow reversal (FR) that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive flow converters. To diesel particulate filters (DPF), lean NOx traps (LNT), and oxidation converters (OC), the combined use of active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to more favorable windows for the filtration, conversion, and regeneration processes. Comparison analyses are made between active flow control and passive flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and converter properties.
Technical Paper

Active Suspension Handling Simulation using Cosimulation

2010-12-01
2010-01-1582
In this study the capabilities of a semi-active suspension and an active roll suspension are evaluated for comparison with a passive suspension. The vehicle used is a utility truck modeled as a multi-body system in ADAMS/Car while the ECU (electronic control unit) is built in Matlab/Simulink. Cosimulation is used in linking the vehicle model with the controller by exchanging the input and output values of each sub-system with one another. For the simulation models considered, results indicate that for a fish-hook cornering maneuver the semi-active suspension is limited in increasing vehicle performance while the active roll suspension significantly improves it. Further analysis is needed to confirm these findings.
Technical Paper

An Experimental Method to Study the Sensitivity of Transmission Laser Welding of Plastic Parts to Interfacial Gaps

2009-04-20
2009-01-1298
Hollow polymer-based automotive components cannot, in general, be directly injection molded because they cannot be ejected from the mold. The common practice is to injection mold two or more parts, and then join these together with a welding process. Of the many joining process available, laser welding has an advantage in geometric design freedom. The laser weld joints are also generally stronger than those of vibration welds because the weld joints are located in the walls rather than on external flanges. Eliminating the external flanges also makes the part more compact. In transmission laser welding processes, the laser beam passes through a transparent part to its interface with an opaque part. The beam energy is absorbed near the interface in the opaque part, and heat flows back across to the transparent half to make the weld pool. So successful laser welds are possible only when there is a continuous interfacial fit between the parts.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

Cosimulation of Active Suspension

2005-04-11
2005-01-0984
The purpose of this study is to determine the feasibility of simulating an active suspension using cosimulation. The vehicle used is a utility truck created in ADAMS/View while the E.C.U. (electronic control unit) is implemented in Simulink for both a fully-active and semi-active controller. The LQR (Linear Quadratic Regulator) is used for the fully-active system while the semi-active system uses a switching law adopted from Karnopp et al. {1}. Nonlinear and linear vehicle models are compared and the influence of suspension bushings is examined. All simulations undertaken are geared towards evaluating the ride capabilities of such systems.
Technical Paper

Design of As-Cast High Strength Al-Si-Cu-Ni-Sr Alloys Using the Taguchi Method

2017-09-30
2017-01-5009
In the present study, a design of experiment (DOE) technique, the Taguchi method, was used to develop as-cast high strength aluminum alloys with element additions of Si, Cu, Ni and Sr. The Taguchi method uses a special design of orthogonal arrays to study all the designed factors with a minimum of experiments at a relatively low cost. The element factors chosen for this study were Si, Cu, Ni and Sr content in the designed aluminum-based alloys. For each factor, three different levels of weight percentages were selected (Si: 6, 9, 12%, Cu: 3, 5, 7%, Ni: 0.5, 1, 1.5% and Sr: 0.01, 0.02, 0.03%). Tensile properties such as ultimate tensile strength, yield strength and elongation at failure were selected as three individual responses to evaluate the engineering performance of the designed alloys. The results of the factor response analysis were used to derive the optimal level combinations.
Journal Article

Development of a Novel High Strength Aluminum-Cerium Based Rotor Alloy for Electric Vehicle Induction Motor Applications

2023-04-11
2023-01-0878
To increase vehicle range, light weighting of electric vehicles has been extensively researched and implemented by using aluminum intensive solutions. With regards to traction motors, aluminum alloys that have a desired combination of high electrical conductivity and strength are required for high power output and efficiency. In this research, a novel Al-Ce based alloy, with minor additions of Si and Mg for strengthening, was investigated in different heat treatment tempers to maximize mechanical properties while maintaining a high electrical conductivity. This new alloy system appears to have addressed the classic conundrum of the inverse relationship of mechanical performance verses electrical conductivity for traditional aluminum alloy systems. The results suggest that the Al-Ce-Si-Mg alloy had yield strength in excess of 120 MPa and electrical conductivity of at least 50 %IACS in the T5 and T6 conditions.
Technical Paper

Dynamic Stability Analysis of Coupled Vehicles for General and Military Applications

2010-04-12
2010-01-0638
The paper describes a study conducted by the University of Windsor Vehicle Dynamics and Control Research Group into the stability of coupled vehicles, e.g., truck-trailer combinations. Several instabilities associated with truck-trailer combinations have been well documented, and have been predicted using mathematical models. Despite having relatively low complexity the classic truck-trailer model, a simple two body, three degree of freedom, linear model has been used extensively in coupled vehicle stability analyses. The aim of the presented work was to extend the conventional coupled vehicle analysis with a set of more elaborate mathematical models evaluating various vehicle configurations. Using in-house multibody dynamics software the linearized equations of motion of three dimensional models were automatically generated for various coupled vehicle configurations with general and military applications. Stability analyses were conducted over a range of expected operating speeds.
Technical Paper

Effect of Cooling Rates on the Microstructure Evolution and Eutectic Formation of As-cast Mg-Al-Ca Alloys

2009-04-20
2009-01-0789
A Mg-5.0wt.%Al-2.0wt.%Ca alloy (AC52) was cast at different cooling rates varying from 0.5 to 65 °C/s. The dendrites was characterized by determining the secondary dendrite arm spacing (SDAS) and the volume fraction of secondary eutectic phases with the linear intercept and point counting methods, respectively. The SDAS decreases significantly with increasing cooling rates, while the volume fraction of the eutectic phase increases from 10.8 ± 1.44 vol.% at 0.5 °C/s to 20.4 ± 1.52 vol.% at 20 °C/s. However, a further increase in cooling rate beyond 20 °C/s has limited influence on the volume fraction of eutectic phases. A large number of dispersed eutectic phases were observed in the primary α-Mg of the alloys cast at low cooling rates. Although, at the microscale, there were no dispersed eutectic phases in alloys cast at a high cooling rate of 30 °C/s, nanoscale eutectic phases were found by TEM observation.
Technical Paper

Effect of Surface Roughness and Sliding Velocity on Tribological Properties of an Oxide-Coated Aluminum Alloy

2014-04-01
2014-01-0957
Aluminum engines have been successfully used to replace heavy gray cast engines to lighten the car's weight and reduce the fuel consumption. To overcome the aluminum alloys' poor wear resistance, cast iron liners and thermal spraying coatings were used as cylinder bore materials for wear protection. A plasma electrolytic oxidation (PEO) technique had also been proposed to produce an oxide coating on aluminum cylinder bore. The oxide coating can have a low coefficient of friction (COF) and minimum wear shown in the lab tests. To conserve more fuel, the stopping and restarting system was introduced when the vehicle was forced to stop immediately for a short time. When the engine was forced to stop and restart, the reciprocating speed of the piston was very slow, and the friction between the piston and the cylinder was high. In this research, a pin-on-disc tribometer was used to investigate tribological behavior of the oxide coating on an aluminum alloy.
Technical Paper

Electrical Insulation Properties of Alumina Coatings on SAE 52100 Bearing Steel

2022-03-29
2022-01-0726
In recent years, bearing electrical failures have been a significant concern in electric cars, restricting electric engine life. This work aims to introduce a coating approach for preventing electrical erosion on 52100 alloy steel samples, the most common material used on manufacturing bearings. This paper discusses the causes of shaft voltage and bearing currents, and summarizes standard electrical bearing failure mechanisms, such as morphological damages and lubrication failures. Alumina coatings are suitable for insulating the 52100 alloy steel samples because alumina coatings provide excellent insulation, hardness, and corrosion resistance, among other characteristics. The common method to coat an insulated alumina coating on the bearing is thermal spraying, but overspray can cause environmental issues, and the coating procedures are costly and time-consuming.
Technical Paper

Electrochemical Analysis of High Capacity Li-Ion Pouch Cell for Automotive Applications

2021-04-06
2021-01-0760
Major original equipment manufacturers (OEMs) have already marketed electric vehicles in large scale but apart from business strategies and policies, the real engineering problems must be addressed. Lithium-ion batteries are a promising technology for energy storage; however, their low energy density and complex electro-chemical nature, compared to fossil fuels, presents additional challenges. Their complex nature and strong temperature dependence during operation must be studied with additional accuracy, capable to predict their behavior. In this research, a pseudo two dimensional (P2D) electro-chemical model, for a recent high capacity NMC pouch cell for automotive applications is developed. The electrochemical model with its temperature dependent parameters is validated at high, low, and reference temperature within 10°C to 50°C temperature range. For each temperature various discharge C-rates to accurately replicate the battery cell operational conditions.
Technical Paper

Empirical and Theoretical Investigations of Active-flow Control on Diesel Engine After-treatment

2006-04-03
2006-01-0465
Empirical and theoretical studies are made between active-flow control and passive-flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The exhaust active-flow control includes the parallel alternating flow, partial restricting flow, periodic flow reversal, and extended flow stagnation that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive-flow converters [1, 2]. The tests are set up on a single cylinder Yanmar engine. Theoretical studies are performed with the one-dimensional transient modeling techniques to analyze the thermal behavior of the diesel after-treatment systems when active flow control schemes are applied.
Technical Paper

Energy Efficiency Analysis of Active-flow Operations in Diesel Engine Aftertreatment

2006-10-16
2006-01-3286
Experiments are carried out with the diesel particulate filter and oxidation catalyst embedded in the active-flow configurations on a single cylinder diesel engine. The combined use of various active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to favorable windows for filtration, conversion, and regeneration processes. Empirical and theoretical investigations are performed with a transient one-dimensional single channel aftertreatment model developed in FORTRAN and MATLAB. The influence of the supplemental energy distribution along the length of aftertreatment device is evaluated. The theoretical analysis indicates that the active-flow control schemes have fundamental advantages in optimizing the converter thermal management including reduction in supplemental heating, increase in thermal recuperation, and improving overheating protection.
Journal Article

Experimental Investigation of Axial Cutting of AA6061 Extrusions under a Tension Deformation Mode

2020-04-14
2020-01-0206
A plethora of applications in the transportation industry for both vehicular and roadside safety hardware, especially seatbelts, harnesses and restraints, rely on tensile loading to dissipate energy and minimize injury. There are disadvantages to the current state-of-the-art for these tensile energy absorbers, including erratic force-displacement responses and low tensile force efficiencies (TFE). Axial cutting was extensively demonstrated by researchers at the University of Windsor to maintain a stable reaction force, although exclusively under compressive loading. A novel apparatus was investigated in this study which utilized axial cutting under a tensile loading condition to absorb energy. A parametric scope was chosen to include circular AA6061 extrusions in both T4 and T6 temper conditions with an outer diameter of 63.5 mm and wall thickness of 3.18 mm.
Technical Paper

Experimental Observations on the Mechanical Response of AZ31B Magnesium and AA6061-T6 Aluminum Extrusions Subjected to Compression and Cutting Modes of Deformation

2017-03-28
2017-01-0377
Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial compression and cutting modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. For the axial compression tests, three different end geometries were considered, namely (1) a flat cutoff, (2) a 45 degree chamfer, and (3) a square circumferential notch. AZ31B extrusions with the 45 degree chamfer produced the most repeatable and stable deformation of a progressive fracturing nature, referred to as sharding, with an average SEA of 40 kJ/kg and an average CFE of 45 %, which are nearly equal to the performance of the AA6061-T6. Both the AZ31B specimens with the flat cutoff and the circumferential notch conditions were more prone to tilt mid-test, and lead to an unstable helical fracture, which significantly reduced the SEA.
Technical Paper

Factors Affecting the Tensile Strength of Linear Vibration Welds of Dissimilar Nylons

2002-03-04
2002-01-0604
Three different pairs of high melting temperature and low melting temperature nylons have been welded together using three different design of experiment welding process parameter matrices. An unorthodox analysis of these has revealed that there is a general increase in strength as the total welding sliding distance of the two surfaces increases. This is not surprising. The analysis also reveals that, for a given sliding distance, the vibration amplitude should be large, which shortens the welding time. This strategy produces shorter cycle times and stronger welds, according to the data obtained in these test sets.
X