Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Post-processor for Finite Element Stress-based Fatigue Analysis

2006-04-03
2006-01-0537
Explicit finite element simulations were conducted on an aluminum wheel model where a rotating bend moment was applied on its hub to simulate wheel cornering fatigue testing. A post-processor was developed to calculate equivalent von Mises alternating and mean stresses from stress tensor. The safety factors of fatigue design for each finite element were determined to assess the fatigue performance by utilizing the Goodman linear relationship. Elements with low safety factors were identified due to the prescribed boundary conditions and stress concentrations arising from wheel geometry.
Technical Paper

Experimental Observations on the Mechanical Response of AZ31B Magnesium and AA6061-T6 Aluminum Extrusions Subjected to Compression and Cutting Modes of Deformation

2017-03-28
2017-01-0377
Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial compression and cutting modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. For the axial compression tests, three different end geometries were considered, namely (1) a flat cutoff, (2) a 45 degree chamfer, and (3) a square circumferential notch. AZ31B extrusions with the 45 degree chamfer produced the most repeatable and stable deformation of a progressive fracturing nature, referred to as sharding, with an average SEA of 40 kJ/kg and an average CFE of 45 %, which are nearly equal to the performance of the AA6061-T6. Both the AZ31B specimens with the flat cutoff and the circumferential notch conditions were more prone to tilt mid-test, and lead to an unstable helical fracture, which significantly reduced the SEA.
Technical Paper

General and Galvanic Corrosion Behavior of Aluminized Ultra-High Strength Steel (UHSS) and Magnesium Alloy AZ35 Altered by Plasma Electrolytic Oxidation Coating Processes

2017-03-28
2017-01-0506
Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
Technical Paper

Observations of the Relative Performance of Magnesium and Aluminum Steering Wheel Skeletons with Identical Geometry

2000-03-06
2000-01-0784
Automotive steering wheels depend on a structural skeleton made of steel, aluminum, or magnesium to be the basis for the mechanical properties of the finished part. The mechanical properties of concern are the fatigue properties and the crash performance. The purpose of this study was to evaluate the crash and the fatigue performance of a steering wheel skeleton fabricated by high pressure die casting. Two materials were used to produce two groups of wheels with identical geometry. The production part was designed, optimized and fabricated with AM50A magnesium. The production magnesium component met all of the regulatory design and performance requirements. A small sample run was made in a proprietary aluminum - magnesium alloy. The fatigue and crash properties were evaluated empirically. In fatigue testing, the aluminum skeletons displayed a significant improvement, with respect to the magnesium skeletons, in the number of cycles to failure at the loads tested.
Journal Article

Rotary Fatigue Analysis of Forged Magnesium Road Wheels

2008-04-14
2008-01-0211
Fatigue analysis incorporating explicit finite element simulation was conducted on a forged magnesium wheel model where a rotating bend moment was applied to the hub to simulate rotary fatigue testing. Based on wheel fatigue design criteria and a developed fatigue post-processor, the safety factor of fatigue failure was calculated for each finite element. Fatigue failure was verified through experimental testing. Design modifications were proposed by increasing the spoke thickness. Further numerical and experimental testing indicated that the modified design passed the rotary fatigue test.
X