Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
Technical Paper

A 3-D CFD Study of the Lubricating Oil Flow Path in a Hybrid Vehicle Transmission System

2024-04-09
2024-01-2635
Effective design of the lubrication path greatly influences the durability of any transmission system. However, it is experimentally impossible to estimate the internal distribution of the automotive transmission fluid (ATF) to different parts of the transmission system due to its structural complexities. Hybrid vehicle transmission systems usually consist of different types of bearings (ball bearings, thrust bearings, roller bearings, etc.) in conjunction with gear systems. It is a perennial challenge to computationally simulate such complicated rotating systems. Hence, one-dimensional models have been the state of the art for designing these intricate transmission systems. Though quantifiable, the 1D models still rely heavily on some testing data. Furthermore, HEVs (hybrid electric vehicles) desire a more efficient lubrication system compared to their counterparts (Internal combustion engine vehicles) to extend the range of operation on a single charge.
Technical Paper

A Classification of Reciprocating Engine Combustion Systems

1974-02-01
741156
Obtaining and maintaining a stratified charge in a practical engine is a difficult problem. Consequently, many approaches have been proposed and reported in the scientific and patent literature. In attempting to assess the most profitable approach for future development work, it is important to group together similar approaches so that one can study their performance as a group. Making such a classification has the additional advantage of helping to standardize terminology used by different investigators. With this thought in mind, a literature study was made and a proposed classification chart prepared for the different engine combustion systems reported in the literature. For the sake of completeness, the finally proposed classification chart includes homogeneous combustion engines as well as heterogeneous combustion engines. Because of their similarity of combustion, rotary engines such as the Wankel engine are considered as “reciprocating” although gas turbines are not included.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines

1975-02-01
750468
A computer program which rapidly calculates the equilibrium mole fractions and the partial derivatives of the mole fractions with respect to temperature, pressure and equivalence ratio for the products of combustion of any hydrocarbon fuel and air is described. A subroutine is also given which calculates the gas constant, enthalpy, internal energy and the partial derivatives of these with respect to temperature, pressure and equivalence ratio. Some examples of the uses of the programs are also given.
Technical Paper

A Mechanism-Based Thermomechanical Fatigue Life Assessment Method for High Temperature Engine Components with Gradient Effect Approximation

2019-04-02
2019-01-0536
High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length.
Technical Paper

A Method for Estimating Mileage Improvement and Emission Reductions Achievable by Hybrid-Electric Vehicles

1975-02-01
750194
The results of two derivations relating to the fuel economy of hybrid-electric vehicles (vehicles which employ both a heat engine and electric drive system) are presented and their use is illustrated through the examples of the University of Wisconsin and TRW Systems Group hybrid-electric vehicles. The method of mileage estimation employs a specific fuel-consumption versus torque-speed map for the heat engine under study and knowledge of the hybrid-vehicle dynamics and road-load power. The method is easily extended to estimation of emission reductions through use of specific-emission-production versus torque-speed maps and is applicable to hybrid vehicles with other than electrical energy-storage systems.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

A Parametric Sensitivity Study of Predicted Transient Abuse Loads for Sizing Electric Drive-Unit and Driveline Components

2022-03-29
2022-01-0680
The design and development of electric vehicles involves many unique challenges. One such challenge involves accurately predicting driveline abuse torque loads early in the design cycle to aid with sizing drive-unit and driveline components. Since electrified drivelines typically lack a torque-limiting “fuse” element such as a torque converter or slipping clutch, they can be vulnerable to sudden transient events involving high wheel acceleration or deceleration. Component sizing must account for the loads caused by such events, and these loads must be accurately quantified early on when vehicle parameters haven’t been finalized yet. Early load predictions can be made by completing abuse maneuver simulations where key parameters are varied to gauge their influence on simulated loads. Understanding how these parameters impact loads allows for better risk assessment during the design process, as these parameters will inevitably change until a final design is iterated upon.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Renewed Look at Centralized vs. Decentralized Actuation for Braking Systems

2023-11-05
2023-01-1865
De-centralized brake actuation – that is, brake systems that incorporate individual actuators at each wheel brake location to both provide the apply energy and the modulation of braking force – is not a new area of study. Typically realized in the form of electro-mechanical brake calipers or drum brakes, or as “single corner” hydraulic actuators, de-centralized actuation in braking systems has already been deployed in production on General Motor EV1 Electric Vehicle (1997) in the form of electric drum brakes and has been studied continually by the automotive industry since then. It is frequently confused with “brake by wire,” and indeed practical implementations of de-centralized actuation are a form of brake by wire technology. However, with millions of vehicles on the road already with “brake by wire” systems - the vast majority of which have centralized brake actuation – the future of “brake by wire” is arguable settled.
Technical Paper

A Resistance Thermometer for Engine Compression Temperatures

1963-01-01
630128
Fine-wire resistance thermometers were used to measure compression gas temperatures in a motoring (nonfiring) cycle CFR engine. Temperature versus crankangle curves were obtained for the compression and expansion strokes by means of tungsten wires ranging in diameter from 0.15–1.00 mils and at speeds from 600–1800 rpm. The results were compared with the infrared pyrometer; the peak temperature and peak crankangle lags were determined as a function of the wire diameter and engine speed. Attempts to evaluate the instantaneous energy balance around the wire resulted in a negative heat transfer coefficient, for which no current satisfactory explanation is available, although other observers have reported similar phenomena. The tungsten resistance thermometer is simple to build, easy to install, and requires no modification of the engine block for use during motoring. Thus, it is suitable for comparing the compression temperatures of different design engines.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

2017-03-28
2017-01-0659
Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

A System of Systems Approach to Automotive Challenges

2018-04-03
2018-01-0752
The automotive industry is facing many significant challenges that go far beyond the design and manufacturing of automobile products. Connected, autonomous and electric vehicles, smart cities, urbanization and the car sharing economy all present challenges in a fast-changing environment which the automotive industry must adapt to. Cars no longer are just standalone systems, but have become constituent systems (CS) in larger System of Systems (SoS) context. This is reflected in the emergence of several acronyms such as vehicle-to-everything (V2X), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) expressions. System of Systems are defined systems of interest whose elements (constituent systems) are managerially and operationally independent systems. This interoperating and/or integrated collection of constituent systems usually produce results unachievable by the individual systems alone, for example the use of car batteries as virtual power plants.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
X