Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Classification of Reciprocating Engine Combustion Systems

1974-02-01
741156
Obtaining and maintaining a stratified charge in a practical engine is a difficult problem. Consequently, many approaches have been proposed and reported in the scientific and patent literature. In attempting to assess the most profitable approach for future development work, it is important to group together similar approaches so that one can study their performance as a group. Making such a classification has the additional advantage of helping to standardize terminology used by different investigators. With this thought in mind, a literature study was made and a proposed classification chart prepared for the different engine combustion systems reported in the literature. For the sake of completeness, the finally proposed classification chart includes homogeneous combustion engines as well as heterogeneous combustion engines. Because of their similarity of combustion, rotary engines such as the Wankel engine are considered as “reciprocating” although gas turbines are not included.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comparison of Gasoline Direct Injection Part I - Fuel System Deposits and Vehicle Performance

1999-05-03
1999-01-1498
Four 1998 Mitsubishi Carismas, two equipped with direct injection and two with port fuel injection engines, were tested in 20,100 km intervals to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant on vehicle deposits and emissions, acceleration and driveability performance. The program showed that engine fuel system deposits, including specifically those on intake valves, combustion chambers and injectors are formed in higher amounts in the GDI engine than the PFI engine. The fuel additive used reduced injector deposits and combustion chamber deposits in the GDI, but had no significant effect on intake valve deposits, which are affected by crankcase oil formulation. In GDI vehicles, deposited engines were found to have increased hydrocarbon and carbon monoxide emissions and poorer fuel economy and acceleration, but lower particulate emissions.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

1999-05-03
1999-01-1499
Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

A Comparison of the Effects of Additives on Spark Ignited Combustion in a Laminar Flow System and in an Engine Under Cold-Start Conditions

2002-10-21
2002-01-2834
Experiments have been conducted in a laminar flow system and in a research engine to investigate the effect of additives on the combustion of gasoline-like fuels. The purpose of the laminar system is to enable rapid screening of additives to determine which, if any, have an enhancing effect on the early stages of combustion, especially under conditions of poor fuel vaporization which exist during cold-start in a spark ignited engine and which make flame propagation difficult to start and sustain. The base fuel used in the laminar and engine systems was a 9 component mixture formulated to simulate those components of gasoline expected to be present in the vapor phase in the intake system of an engine under cold-start conditions. In the laminar system, the pre-mixed, pre-vaporized fuel-air mixture is ignited and a time history of the combustion generated, hydroxyl radical chemiluminescence is recorded.
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

2007-10-29
2007-01-3995
Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines

1975-02-01
750468
A computer program which rapidly calculates the equilibrium mole fractions and the partial derivatives of the mole fractions with respect to temperature, pressure and equivalence ratio for the products of combustion of any hydrocarbon fuel and air is described. A subroutine is also given which calculates the gas constant, enthalpy, internal energy and the partial derivatives of these with respect to temperature, pressure and equivalence ratio. Some examples of the uses of the programs are also given.
Technical Paper

A High-Fidelity Study of High-Pressure Diesel Injection

2015-09-01
2015-01-1853
A study of n-dodecane atomization, following the prescribed unseating of the needle tip, is presented for a high-pressure, non-cavitating Bosch Diesel injector (“Spray A”, in the Engine Combustion Network denomination). In the two simulations discussed here, the internal and external multiphase flows are seamlessly calculated across the injection orifice using an interface-capturing approach (for the liquid fuel surface) together with an embedded boundary formulation (for the injector's walls). This setting makes it possible to directly relate the liquid jet spray characteristics (under the assumption of sub-critical flow and with a grid resolution of 3 µm, or 1/30 of the orifice diameter) to the moving internal geometry of the injector. Another novelty is the capability of modeling the compressibility of the liquid and the gas phase while maintaining a sharp interface between the two.
Technical Paper

A Measurement Technique for Characterizing Performance Degradation Caused by EMI on Radio Equipment

2007-10-30
2007-01-4203
By using a radio frequency (RF) audio distortion measurement test setup, communication devices can be evaluated for degradation caused by electromagnetic interference (EMI) from active vehicle components. This measurement technique can be used to determine the performance of a radio receiver under a variety of conditions. The test setup consists of making measurements on a baseband audio signal that is sent to the device under test (receiver) via over-the-air RF transmissions. Once a baseline is established, active components on the vehicle can be powered on to determine their contribution to the receiver's degradation. The degradation measured is a result of distortion caused by conducted, radiated, and/or coupled EMI from active components into the receiver's passband.
Technical Paper

A Method for Estimating Mileage Improvement and Emission Reductions Achievable by Hybrid-Electric Vehicles

1975-02-01
750194
The results of two derivations relating to the fuel economy of hybrid-electric vehicles (vehicles which employ both a heat engine and electric drive system) are presented and their use is illustrated through the examples of the University of Wisconsin and TRW Systems Group hybrid-electric vehicles. The method of mileage estimation employs a specific fuel-consumption versus torque-speed map for the heat engine under study and knowledge of the hybrid-vehicle dynamics and road-load power. The method is easily extended to estimation of emission reductions through use of specific-emission-production versus torque-speed maps and is applicable to hybrid vehicles with other than electrical energy-storage systems.
Journal Article

A Numerical Approach for the Analysis of Hydrotreated Vegetable Oil and Dimethoxy Methane Blends as Low-Carbon Alternative Fuel in Compression Ignition Engines

2023-04-11
2023-01-0338
Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are getting serious interest within the scientific community and industry. Dimethoxy methane (OME1) is the smaller molecule among this group, which is of special interest due to its low soot formation. However, its application is still limited mainly due to its low lower heating value. In contrast, other fuel alternatives like hydrogenated vegetable oil (HVO) are considered as drop-in solutions thanks to their very similar properties and molecular composition to that of fossil diesel. However, their pollutant emission improvement is limited.
Technical Paper

A Numerical Study of a Free Piston IC Engine Operating on Homogeneous Charge Compression Ignition Combustion

1999-03-01
1999-01-0619
A free piston, internal combustion (IC) engine, operating at high compression ratio (∼30:1) and low equivalence ratio (ϕ∼0.35), and utilizing homogeneous charge compression ignition combustion, has been proposed by Sandia National Laboratories as a means of significantly improving the IC engine's cycle thermal efficiency and exhaust emissions. A zero-dimensional, thermodynamic model with detailed chemical kinetics, and empirical scavenging, heat transfer, and friction component models has been used to analyze the steady-state operating characteristics of this engine. The cycle simulations using hydrogen as the fuel, have indicated the critical factors affecting the engine's performance, and suggest the limits of improvement possible relative to conventional IC engine technologies.
Technical Paper

A Numerical and Experimental Investigation on Different Strategies to Evaluate Heat Release Rate and Performance of a Passive Pre-Chamber Ignition System

2022-03-29
2022-01-0386
Pre-chamber ignition has demonstrated capability to increase internal combustion engine in-cylinder burn rates and enable the use of low engine-out pollutant emission combustion strategies. In the present study, newly designed passive pre-chambers with different nozzle-hole patterns - that featured combinations of radial and axial nozzles - were experimentally investigated in an optically accessible, single-cylinder research engine. The pre-chambers analyzed had a narrow throat geometry to increase the velocity of the ejected jets. In addition to a conventional inductive spark igniter, a nanosecond spark ignition system that promotes faster early burn rates was also investigated. Time-resolved visualization of ignition and combustion processes was accomplished through high-speed hydroxyl radical (OH*) chemiluminescence imaging. Pressure was measured during the engine cycle in both the main chamber and pre-chamber to monitor respective combustion progress.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Qualitative Evaluation of Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine

2007-04-16
2007-01-1467
In an optically-accessible single-cylinder engine fuelled with hydrogen, OH* chemiluminescence imaging and planar laser induced fluorescence (PLIF) are used to qualitatively evaluate in-cylinder mixture formation. The experiments include measurements for engine operation with hydrogen injection in-cylinder either prior to or after intake valve closure (IVC). Pre-IVC injection is used to produce a near homogeneous mixture in-cylinder to establish a baseline comparison for post-IVC injection. To assess the effects of injection pressure on mixture formation, two injection pressures are used for post-IVC injection. For post-IVC injection with start of injection (SOI) coincident with IVC, mixture distribution is similar to pre-IVC injection and there are little differences between the two injection pressures. With retard of SOI from IVC, mixture inhomogeneities increase monotonically for both injection pressures.
Journal Article

A Review of Current Understanding of the Underlying Physics Governing the Interaction, Ignition and Combustion Dynamics of Multiple-Injections in Diesel Engines

2022-03-29
2022-01-0445
This work is a comprehensive technical review of existing literature and a synthesis of current understanding of the governing physics behind the interaction of multiple fuel injections, ignition, and combustion behavior of multiple-injections in diesel engines. Multiple-injection is a widely adopted operating strategy applied in modern compression-ignition engines, which involves various combinations of small pre-injections and post-injections of fuel before and after the main injection and splitting the main injection into multiple smaller injections. This strategy has been conclusively shown to improve fuel economy in diesel engines while achieving simultaneous NOX, soot, and combustion noise reduction - in addition to a reduction in the emissions of unburned hydrocarbons (UHC) and CO by preventing fuel wetting and flame quenching at the piston wall.
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

2017-03-28
2017-01-0659
Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Technical Paper

A Statistical Review of Available Data Correlating the BMW and Ford Intake Valve Deposit Tests

1998-05-04
981365
A 100-hour engine dynamometer test for intake valve deposits (IVD) which uses a Ford 2.3L engine was developed by the Coordinating Research Council (CRC). Recently, this test has been approved by the American Society for Testing and Materials (ASTM) as Test Method D 6201-97. Since this test offers improvements in test variability, duration, and cost, it is expected to replace ASTM D 5500-94, a 16,000-km vehicle test run using a BMW 318i, as the key performance test for the Certification of Gasoline Deposit Control Additives by the EPA Final Rule. As a step in the replacement process, a correlation between valve deposit levels for the CRC 2.3L Ford IVD test and ASTM D 5500 BMW IVD test must be determined. This paper provides a statistical review of available data in an attempt to provide such a correlation.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
X