Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Analysis of Thermal Runaway Propagation in Different Modular Lithium-Ion Battery Configuration

2024-05-06
2024-01-2901
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and applying phase change materials (PCMs) and Silica Aerogel. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applications.
Technical Paper

A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines

1975-02-01
750468
A computer program which rapidly calculates the equilibrium mole fractions and the partial derivatives of the mole fractions with respect to temperature, pressure and equivalence ratio for the products of combustion of any hydrocarbon fuel and air is described. A subroutine is also given which calculates the gas constant, enthalpy, internal energy and the partial derivatives of these with respect to temperature, pressure and equivalence ratio. Some examples of the uses of the programs are also given.
Technical Paper

A Method for Estimating Mileage Improvement and Emission Reductions Achievable by Hybrid-Electric Vehicles

1975-02-01
750194
The results of two derivations relating to the fuel economy of hybrid-electric vehicles (vehicles which employ both a heat engine and electric drive system) are presented and their use is illustrated through the examples of the University of Wisconsin and TRW Systems Group hybrid-electric vehicles. The method of mileage estimation employs a specific fuel-consumption versus torque-speed map for the heat engine under study and knowledge of the hybrid-vehicle dynamics and road-load power. The method is easily extended to estimation of emission reductions through use of specific-emission-production versus torque-speed maps and is applicable to hybrid vehicles with other than electrical energy-storage systems.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Tape Recording and Computer Processing System for Instantaneous Engine Data

1968-02-01
680133
The development of a high speed, multichannel data acquisition system is described. A precision magnetic tape recorder is used to record analog data from highly transient phenomena. Analog-to-digital data conversion is performed on a hybrid computer and the digitized data is processed using large, high speed digital computers. A detailed example of the application of the system to the measurement of rates-of-injection, rates-of-heat release, and instantaneous rates-of-heat transfer from the cylinder gases to the cylinder walls in a high speed open-chamber diesel engine is presented.
Technical Paper

A Triangulated Lagrangian Ignition Kernel Model with Detailed Kinetics for Modeling Spark Ignition with the G-Equation-Part I: Geometric Aspects

2018-04-03
2018-01-0195
Modeling ignition kernel development in spark ignition engines is crucial to capturing the sources of cyclic variability, both with RANS and LES simulations. Appropriate kernel modeling must ensure that energy transfer from the electrodes to the gas phase has the correct timing, rate and locations, until the flame surface is large enough to be represented on the mesh by the G-Equation level-set method. However, in most kernel models, geometric details driving kernel growth are missing: either because it is described as Lagrangian particles, or because its development is simplified, i.e., down to multiple spherical flames. This paper covers the geometric aspects of kernel development, which makes up the core of a Triangulated Lagrangian Ignition Kernel model. One (or multiple, if it restrikes) spark channel is initialized as a one-dimensional Lagrangian particle thread.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Journal Article

Aging of a Multi-Hole Diesel Injector and Its Effect on the Rate of Injection

2020-04-14
2020-01-0829
In order to comply with the increasingly restrictive limits of emissions and fuel consumption, researches are focusing on improving the efficiency of combustion engines. In this area, the aging of the injector and its effect on the injection development is not entirely analyzed. In this work, the rate of injection of a diesel injector at different stages of its lifetime is analyzed. To this end, a multi-hole piezoelectric injector was employed, comparing the injection rate measured at the beginning of its lifetime to the rate provided by the injector after aging, maintaining the same boundary conditions in both measurements. Injection pressures up to 200 MPa were used throughout the experiments. The results showed that the steady-state rate of injection was lower after the injector aged. Furthermore, the injector took a longer time to close the needle and end the injection, in comparison with the measurements done at earlier stages of its lifetime.
Technical Paper

An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions

2013-04-08
2013-01-1676
Compared to the gasoline engine, the diesel engine has the advantage of being more efficient and hence achieving a reduction of CO₂ levels. Unfortunately, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are high. To overcome these drawbacks, several new combustion concepts have been developed, including the PCCI (Premixed Charge Compression Ignition) combustion mode. This strategy allows a simultaneous reduction of NOx and soot emissions through the reduction of local combustion temperatures and the enhancement of the fuel/air mixing. In spite of PCCI benefits, the concept is characterized by its high combustion noise levels. Currently, a promising way to improve the PCCI disadvantages is being investigated. It is related with the use of low cetane fuels such as gasoline and diesel-gasoline blends.
Technical Paper

An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1050
A commercially available fuel, E85, a blend of ~85% ethanol and ~15% gasoline, can be a viable substitute for fossil fuels in internal combustion engines in order to achieve a reduction of the greenhouse gas (GHG) emissions. Ethanol is traditionally made of biomass, which makes it a part of the food-feed-fuel competition. New processes that reuse waste products from other industries have recently been developed, making ethanol a renewable and sustainable second-generation fuel. So far, work on E85 has focused on spark ignition (SI) concepts due to high octane rating of this fuel. There is very little research on its application in CI engines. Alcohols are known for low soot particle emissions, which gives them an advantage in the NOx-soot trade-off of the compression ignition (CI) concept.
Technical Paper

An Experimental Investigation on Spray Mixing and Combustion Characteristics for Spray C/D Nozzles in a Constant Pressure Vessel

2018-09-10
2018-01-1783
The Engine Combustion Network (ECN) is a coordinate effort from research partners from all over the world which aims at creating a large experimental database to validate CFD calculations. Two injectors from ECN, namely Spray C and D, have been compared in a constant pressure flow vessel, which enables a field of view of more than 100 mm. Both nozzles have been designed with similar flow metrics, with Spray D having a convergent hole shape and Spray C a cylindrical one, the latter being therefore more prone to cavitation. Although the focus of the study is on reacting conditions, some inert cases have also been measured. High speed schlieren imaging, OH* chemiluminescence visualization and head-on broadband luminosity have been used as combustion diagnostics to evaluate ignition delay, lift off length and reacting tip penetration. Parametric variations include ambient temperature, oxygen content and injection pressure variations.
Journal Article

An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber

2017-03-28
2017-01-0850
Visualization of single-hole nozzles into quiescent ambient has been used extensively in the literature to characterize spray mixing and combustion. However in-cylinder flow may have some meaningful impact on the spray evolution. In the present work, visualization of direct diesel injection spray under both non-reacting and reacting operating conditions was conducted in an optically accessible two-stroke engine equipped with a single-hole injector. Two different high-speed imaging techniques, Schlieren and UV-Light Absorption, were applied here to quantify vapor penetration for non-reacting spray. Meanwhile, Mie-scattering was used to measure the liquid length. As for reacting conditions, Schlieren and OH* chemiluminescence were simultaneously applied to obtain the spray tip penetration and flame lift-off length under the same TDC density and temperature. Additionally, PIV was used to characterize in-cylinder flow motion.
Technical Paper

An Investigation of the Engine Combustion Network ‘Spray B’ in a Light Duty Single Cylinder Optical Engine

2018-04-03
2018-01-0220
Engine Combustion Network promotes fundamental investigations on a number of different spray configurations with the goal of providing experimental results under highly controlled conditions for CFD validation. Most of the available experiments up to now have been obtained in spray vessels, which miss some of the interactions governing spray evolution in the combustion chamber of an engine, such as the jet wall interaction and the transient conditions in the combustion chamber. The main aim of the present research is to compare the results obtained with a three-hole, 90 μm injector, known as ECN’s Spray B, in these constant-volume vessels and more recent Heavy-Duty engines with those obtained in a Light Duty Single Cylinder Optical Engine, under inert and reactive conditions, using n-dodecane. In-cylinder conditions during the injection were estimated by means of a 1-D and 0-D model simulation, accounting for heat transfer and in-cylinder mass evolution.
Journal Article

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

2012-04-16
2012-01-1067
Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Technical Paper

Assessment of the Ignition System Requirement on Diluted Mixture Spark Engines

2020-04-14
2020-01-1116
In order to face the new challenges, spark ignition engines are evolving by following some strategies and technologies. Among them, alternative combustion processes based on the dilution of the homogeneous mixture, either with fresh air or with Exhaust Gas Recirculation (EGR), are being explored. In a higher or lower extent, these changes modify in-cylinder thermodynamic conditions during the engine operation (pressure, temperature and gas composition) thus conditioning the spark ignition system requirements that will have to evolve to become more reliable and powerful. In this framework, an experimental study on the effect of the key in-cylinder conditions on the ignition system performance has been carried out in a single-cylinder spark-ignition (SI) research engine. The study includes EGR, lambda and energizing time sweeps to assess the behavior of the engine in different operating conditions.
Technical Paper

Battery Surface Temperature Measurement Correction for an Accelerating Rate Calorimeter with Sapphire Optical Access

2023-08-28
2023-24-0164
Upcoming legislation towards zero carbon emission is pushing the electric vehicle as the main solution to achieve this goal. However, electric vehicles still require further battery development to meet customer’s requirements as fast charge and high energy density. Both demands come with the cost of higher heat dissipation as lithium transport and chemical reaction inside the battery need to be performed faster, increasing the joule effect inside the battery. Due to its working principle, which guarantees an adiabatic environment, an accelerating rate calorimeter is used to study thermal phenomena in batteries like a thermal runaway. However, this equipment is not prepared to work with optical access, which helps to study and to comprehend battery surface distribution and other thermal aspects. This paper aims to show a methodology to correct temperature measurement when using a thermographic camera and optical access of sapphire in an accelerating rate calorimeter.
Journal Article

CO2 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels

2020-06-30
2020-37-0026
Plug-in Hybrid Electric Vehicles (PHEVs) can be considered as the most promising technology to achieve the European CO2 targets together with a moderate infrastructure modification. However, the real benefits, in terms of CO2 emissions, depend on a great extent on the energy source (fuel and electricity mix), user responsibility, and vehicle design. Moreover, the electrification of the powertrain does not reduce other emissions as NOx and particulate matter (mainly soot). In the last years, low temperature combustion (LTC) modes as the reactivity controlled compression ignition (RCCI) have shown to achieve ultra-low NOx and soot emissions simultaneously due to the use of two fuels with different reactivity together with high exhaust gas recirculation (EGR) rates. Therefore, the aim of this work is to assess, through numerical simulations fed with experimental results, the effects of different energy sources on the performance and emissions of a series RCCI PHEV.
Technical Paper

Challenges and Directions of Using Ammonia as an Alternative Fuel for Internal Combustion Engines

2023-04-11
2023-01-0324
In recent decades, the importance of emerging alternative fuels has increased significantly as a solution to the problems of global warming and air pollution from energy production. In this context, ammonia (NH3) is seen as a potential option and energy vector that may be able to overcome the technical challenges associated with the use of other carbon-free fuels such as hydrogen (H2) in internal combustion engines (ICE). In this research, a numerical methodology for evaluating the impact of using ammonia as a fuel for spark-ignition ICEs has been developed. A combination of a single-cylinder and multi-cylinder numerical experiments has been performed to identify the main challenges and determine correct engine configuration. In addition, the performance of the engine has been evaluated through standard homologation driving cycles, contrasting it with other alternative propulsion configurations.
X