Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Control of Grasping Force in Teleoperation Using Model Reference Adaptive Approach

1994-06-01
941440
The adaptation to changes in human operator dynamics and changes in working environment dynamics can be an important issue in designing high performance telerobotic systems. This paper describes an approach to force control in telerobotic hand systems in which model reference adaptive control techniques are used to adapt to changes in human operator and working environment dynamics. The techniques have been applied to force-reflective control of a single degree-of-freedom telerobotic gripper system at Wisconsin Center for Space Automation and Robotics (WCSAR). This adaptive gripping system is described in the paper along with results of experiments with human subjects in which the performance of the adaptive system was analysed and compared to the performance of a conventional non-adaptive system. These experiments emphasized adaptation to changes in compliance of gripped objects and adaptation to the on-set of human operator fatigue.
Technical Paper

Humidity and Temperature Control in the ASTROCULTURE™ Flight Experiment

1994-06-01
941282
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Previous Space Shuttle flights (STS-50 and STS-57) have successfully demonstrated the ability to control water movement through a particulate rooting matrix in microgravity and the ability of LED lighting systems to provide high levels of irradiance without excessive heat build-up in microgravity. The humidity and temperature control system used in the middeck flight unit is described in this paper. The system controls air flow and provides dehumidification, humidification, and condensate recovery for a plant growth chamber volume of 1450 cm3.
Technical Paper

Performance Evaluation of the Commercial Plant Biotechnology Facility

1998-07-13
981666
The demand for highly flexible manipulation of plant growth generations, modification of specific plant processes, and genetically engineered crop varieties in a controlled environment has led to the development of a Commercial Plant Biotechnology Facility (CPBF). The CPBF is a quad-middeck locker playload to be mounted in the EXPRESS Rack that will be installed in the International Space Station (ISS). The CPBF integrates proven ASTROCULTURE” technologies, state-of-the-art control software, and fault tolerance and recovery technologies together to increase overall system efficiency, reliability, robustness, flexibility, and user friendliness. The CPBF provides a large plant growing volume for the support of commercial plant biotechnology studies and/or applications for long time plant research in a reduced gravity environment.
X