Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Comprehensive Study on DOC Selection for Euro 6 Compliant Heavy Commercial Vehicles

2021-09-22
2021-26-0216
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms along with top performance for vehicle, a good strategy should be incorporated to control system out NOx emissions and soot regeneration. Extruded Vanadium catalyst is deployed for this passive regeneration system with DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR (Selective Catalyst Reduction), where the amount of catalyst loading in DOC plays an apex role in deciding conversion efficiency of SCR and passive regeneration capabilities. This study mainly focuses on the impact of catalyst loading of DOC over SCR efficiency. NO2 to NOx ratio should be close to 0.5 for optimum conversion efficiency of SCR. Catalyst loading in DOC decides the amount of NO2 coming upstream to SCR.
Technical Paper

Air Quality Improvement in Air Conditioner Bus Saloon Through Carbon Activated Filters for Heavy Duty Commercial Vehicles

2021-09-22
2021-26-0312
The air purifier industry has seen a growth in terms of demand and sales lately. All credit goes to massive Industrialization in developing countries such as India. The most harmful of the pollutants are PM 2.5 articulates and NOx Emissions. This leads to the new trend of customers become health and comfort conscious and willing to pay more for better and improved transportation. To satisfy these demands, COEM’s are developing more numbers of Air conditioning buses. Although the OEM’s are meeting this demand of quantity, the quality of air from air conditioner is still suffer. One of the main reasons for this poor air quality is because of the ineffectiveness of conventional air conditioner air filters to control particulate materials i.e. PM2.5, biological pollutants i.e. microbes, bacteria, viruses, and gaseous pollutants i.e. CO, CO2, SO2, NOX, O3 & VOCs in air. As per various researches, health problems associated with bus occupant compartment air quality appear more frequently.
Technical Paper

Assessment & Optimization of Front End Cooling Module of a Commercial Vehicle by CFD Simulation & Prototype Testing

2020-04-14
2020-01-0164
Overall cycle time and prototype testing are significantly decreased by assessment of cooling module performance in the design stage itself. Hence, Front End Cooling and Thermal Management are essential components of the vehicle design process. Performance of the cooling module depends upon a variety of factors like frontal opening, air flow, under-hood sub-systems, module positioning, front grill design, fan operation. Effects of design modifications on the engine cooling performance are quantified by utilizing computational fluid dynamics (CFD) tool FluentTM. Vehicle frontal configuration is captured in the FE model considering cabin, cargo and underbody components. Heat Exchanger module is modelled as a porous medium to simulate the fluid flow. Performance data for the Heat Exchanger module is generated using the 1D KuliTM software. In this paper, CFD simulation of Front End Cooling is performed for maximum torque and maximum power operating conditions.
Technical Paper

Assessment of Motor Cooling Performance in Commercial EV Vehicles through Numerical Simulation

2022-10-05
2022-28-0045
In an electric vehicle, engine is replaced with battery and transmission is replaced with traction motor. Thermal management of electric battery and motor became a necessary evaluation step in the design and development process of electric vehicles. The temperature of the traction motor coolant is required to be maintained below 600C to ensure proper functioning of the system. Coolant takes away heat from traction motor, motor controller along with an on-board charger in battery charging and discharging conditions. In this paper the cooling unit selection for the total required heat rejection from all three components is analytically calculated and thermal management methodology of liquid-cooled Electric Motor is being studied and documented with the help of numerical simulation. The results are further validated with test results in Electric bus for city application.
Technical Paper

Calibration Strategies to Improve Exhaust Temperature Management in BSVI with Optimized Fuel Economy for 3.77 Lts Engine

2019-01-09
2019-26-0060
For the upcoming norms of BSVI, it is very important to keep the balance of emission and fuel economy. In these paper different concepts for exhaust gas temperature management will be analyzed and compared. In transient and steady conditions with medium and low load, the effects of active control strategies on exhaust thermal management were studied at the test bench, which include E waste gate intake throttle valve opening, injection advance angle, injection pressure and post injection. The comparison study was factors impacting the fuel economy and temperature management along with to meet WHSC & WHTC emission. The DOE was done to understand the best suitable match with the above function to achieve the optimized fuel economy and BSVI legislative requirement. Different test where carried with 0-100% of opening of intake throttle valve, E waste full open and late post injection to understand the thermal management of engine in part and full load.
Technical Paper

Comparative Study of DOC Volume and PGM Loading on Exotherm and HC Slip during Active DPF Regeneration

2021-09-22
2021-26-0207
The diesel oxidation catalyst (DOC) is one of the major components of a diesel after treatment system. Earlier, DOCs were majorly used to oxidise un-burnt HC and CO from the exhaust gas to keep these pollutants within legislation limits. As legislative norms evolved towards becoming more stringent, the technology and chemistry of after-treatment catalysts have also advanced simultaneously. For Diesel Engines to meet BSVI emission norm, the DOC has a vital role to play. Apart from oxidizing un-burnt THC and CO, now it has to perform additional functions of converting NOx to NO2 to achieve desired NO2/NOx ratio for better DeNOx in the SCR and also give efficient exotherm across it when the cat burner fuel is injected during DPF Regeneration with minimal HC slip. In this paper, two DOCs having different PGM loadings and volumes are evaluated for their exothermal efficiencies and corresponding THC slips.
Technical Paper

Design Optimization of Engine Cooling Unit Packaging for Commercial Vehicle

2018-07-09
2018-28-0013
An engine cooling system is required to maintain stable operating temperature for the engine and prevent it from overheating. Thermal distortion of engine parts can take place if proper cooling is not maintained and engine may loss efficiency. One of the major problem in this domain is to incorporate separate cooling systems for the different variants of engines (different power rating). A single optimized cooling unit is desired to manage the entire range of engine rated power. The factors that affect the cooling system are front end grill opening area, air recirculation, location of snorkel inlet, radiator core size, which need to be tuned to get appropriate results. The above parameters are tuned to obtain appropriate results using the Computational Fluid Dynamics (CFD) simulations. In the next stage, on road cooling trials are performed and real time data is collected.
Technical Paper

Development of Air less Urea Dozing Architecture for Better Optimum Spray Characteristics and to Avoid Urea Crystallization

2017-07-10
2017-28-1927
The urea NOx selective catalytic reduction (SCR) is an effective technique for the reduction of NOx emitted from diesel engines. Urea spray quality has significant effect on NOx conversion efficiency. Air less injection is one of effective, less complex way of injecting urea spray into the Exhaust stream. Further with air less injection it become more challenging in an engine platform of ~3 to 4L where Exhaust mass flow and temperature are relatively less. The droplet diameter and velocity distribution of De-Nox system has taken as input along with Engine raw emission data for a numerical model. The atomization and evaporation of airless urea injection systems were modeled using computational fluid dynamics. The numerical model was validated by the experimental results.
Technical Paper

Evaluation of Different Methodologies of Soot Mass Estimation for Optimum Regeneration Interval of Diesel Particulate Filter (DPF)

2021-09-22
2021-26-0208
Diesel engines have always been popular for their low end torque and lugging abilities. With their higher thermal efficiencies through technical advancements, diesel engines are preferred powertrains in mass transportation of goods as well as people [14] [15]. A diesel engine always banks on excess air, which is subjected to higher compression ratios so as to achieve temperatures, enough to facilitate auto-ignition of diesel. With the advent of turbocharging and intercooling, the air availability is further enhanced, ensuring better combustion efficiency, lesser HC, CO and particulate matter (PM) emissions together with improved fuel efficiencies [2] [15]. Higher air availability also has its own shortcomings in the form of higher NOx (Nitrogen oxides) emissions. With stringent emission norms in place, reduction of NOx as well as PM, without sacrificing performance and fuel economy, is of utmost importance.
Technical Paper

Experimental Investigation on the Effect of Pilot and Post Injection on Engine Performance and Emissions

2018-07-09
2018-28-0015
Diesel engines are facing stringent norms and future survival with its lower availability is one of the biggest concerns for OEMs of heavy duty commercial vehicles. This is leading to uplifting of new, latent and innovative techniques to achieve these norms with best possible BSFC to reduce overall diesel consumption. The prime objective of this study is to identify and explore the latent strength of pre and post injection on engine performance, emissions and oil dilution due to soot. The post injection strategy has the potential to reduce soot with almost same NOx and fuel consumption depending on the delay of post injection and its quantity. It aids to increase the engine out temperatures for assistance of after-treatment devices, thus meeting higher temperature requirements for NOx and PM conversion for stringent norms of BSVI.
Technical Paper

Experimental Study of EGR Mixture Design and its Influence on EGR Distribution Across the Cylinder for NOx - PM Tradeoff

2013-11-27
2013-01-2743
Future emissions regulations like BSIV and above in India, Diesel engine manufacturers are forced to find complex ways to reduce exhaust gas pollutant emissions, in particular NOx and particulate matter (PM). Exhaust gas recirculation (EGR) into the engine intake is an established technology to reduce NOx emissions. The distribution of EGR in each cylinder plays vital role in combustion process and hence it will affect exhaust emissions. The influence of EGR mixture design and its effect on distribution across the cylinder has significant impact on the NOx-PM trade-off which is studied on light duty direct injection diesel engine. A simulation and experimental study of EGR mixer design is conducted to explain this effect and the distribution of EGR across the cylinder at different EGR flow rate.
Technical Paper

Experimental and Simulation Study to Optimize the Venturi Throat Diameter for Effective Use of EGR Rate to Achieve BSIV

2013-11-27
2013-01-2739
Exhaust gas recirculation (EGR) is one of the most effective methods for reducing the emissions of nitrogen oxides (NOx) of diesel engines. EGR system has already been used to mass-produce diesel engines, in which EGR is used at the low and medium load of engine operating condition, resulting in NOx reduction. In order to meet future emission standards, EGR must be done over wider range of engine operation, and heavier EGR rate will be needed. It is especially important for EGR to be done in a high engine load range since the amount of NOx is larger than the other engine operation conditions. EGR systems adapted to the diesel engines of trucks usually recirculate exhaust gas utilizing the pressure difference between upstream part of the turbocharger turbine and downstream part of the compressor. The venturi throat diameter plays the vital role for the flow of EGR across the exhaust and intake.
Technical Paper

Performance Analysis of Engine down Speeding in Emission & Fuel Economy

2017-07-10
2017-28-1921
Engine down speeding is rapidly picking up momentum in many segment of world market. Numerous engine down speeding packages from OEM have been tailored to take advantage of the increased efficiencies associated with engine down speeding. Running engine at lower rpm has numerous advantages. The most obvious of these is reduced fuel consumption, since the engine can spend more time running within its optimum efficiency range. By down speeding, the engine is made to run at low speeds and with high torques. For the same power, the engine is operated at higher specific load- Brake Mean Effective pressure (BMEP) which results in higher efficiency and reduced fuel consumption-Brake Specific Fuel Consumption (BSFC). The reasons for increased fuel efficiency are reduced engine friction due to low piston speeds, reduced relative heat transfer and increased thermodynamic efficiency.
Technical Paper

SCR Catalyst Volume Reduction of Vanadium for BSIV Emission Norms

2016-02-01
2016-28-0130
SCR being an advanced active emission technology system for diesel engine, is one of the most cost-effective and fuel-efficient technologies available for complying with the stringent NOx emission legislations. SCR catalyst volume is being considered as the most concerned part for NOx reduction and durability and a key element leading to high financial assessments. The SCR Optimization reduces the possibility of ammonia slip and leads to high NOx conversion rates. By improving the performance of the SCR, the optimization solution also reduces the amount of catalyst needed, thereby reducing associated costs. The decrease in SCR catalyst volume by 1m3 with respect to current set-up will lead to 15% reduction in the total cost of catalyst. All the factors affecting the SCR catalyst volume were focused in detail and the plausible range of catalyst volume was investigated by comparative measurement of these factors.
Technical Paper

Soot Formation in EGR & Non EGR with SCR After Treatment in Light Duty Truck Application

2017-07-10
2017-28-1945
During the last few decades, concerns have grown on the negative effects that diesel particulate matter has on health. Because of this, particulate emissions were subjected to restrictions and various emission-reduction technologies were developed. It is ironic that some of these technologies led to reductions in the legislated total particulate mass while neglecting the number of particles. Focusing on the mass is not necessarily correct, because it might well be that not the mass but the number of particles and the characteristics of them (size, composition) have a higher impact on health. During the diesel engine combustion process, soot particles are produced which is very harmful for the atmosphere. Particulate matter is composed of much organic and inorganic composition which was analyzed after the optimization of SCR and EGR engine out.
Technical Paper

Tail Pipe Emission Study of an Aged Exhaust after Treatment System for 3.8 Litre Diesel Engine

2021-09-22
2021-26-0215
With implementation of stringent BSVI emission norms and regulations like OBD-II on vehicle, it is essential to define the life of exhaust after treatment along with the vehicle. Diesel after treatment generally consists of DOC, DPF and SCR. Lubricating oil contains phosphorus and zinc which adversely affect the DOC. Unburned hydrocarbons (UNHBC) and SOF in tail pipe get accumulated in the DPF. This requires regeneration process where in, high temperatures in exhaust after treatment (EATS) burn the adsorbed Sulphur or phosphorus, thereby improving the conversion efficiencies. Repeated regenerations lead to ash accumulation in DPF and this reduces its capability for soot accumulation. Sulphur in the exhaust impacts SCR through NOx conversion. The present study analyzes the effect of (1) Chemical aging (2) Thermal aging on 3.77 liter diesel engine after treatment. A test cycle was prepared to run the durability for EATS.
Technical Paper

Technology Challenges and Strategies for BS-VI in Commercial Vehicles

2017-07-10
2017-28-1937
Air Pollution is a major concern in our country due to which Indian Government has taken a decision to move from BS-IV to BS-VI which is nearly 90% reduction in NOx and 50% in particulate matter along with addition of particulate number regulation for BS-VI in comparison to BS-IV norms in very short span of time. Vehicle manufacturers are also having the challenge to produce low cost and fuel efficient product with BS-VI solution in order to meet tightening emission regulations and increasing needs of lower fuel consumption. Detailed study is done with different approaches to meet BS-VI emission which is elaborately explained in different aspect of engine design and after treatment parameter with its pros and cons. After Treatment selection plays an important role in engine development to meet stringent emission legislations and customer demands. Strategies for BS-VI were described with the advantage and drawbacks for after treatment selection.
X