Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Comparing the Driving Safety Benefits of Brain Fitness Training Programs for Older Drivers

2016-04-05
2016-01-1441
This study presents a long-term examination of the effects of two types of perceptual-cognitive brain training programs on senior driver behavior and on-road driving performance. Seniors (70+) engaged in either a Toyota-designed in-vehicle training program based on implicit learning principles or a commercially available computer-based training program developed by Posit Science. Another group served as a no-contact control group; total enrollment was 55 participants. Participants completed a series of four experimental sessions: (1) baseline pre-training, (2) immediate post-training, (3) 6-9 months post-training, and (4) 12-16 months post-training. Experimental metrics taken at each session included measures of vehicle control and driver glance behavior on public roads.
Technical Paper

Development of a Performance Specification for Indirect Visibility Systems on Heavy Trucks

2007-10-30
2007-01-4231
Approximately 28,000 crashes involving combination unit trucks occur each year when they are making lane changes, merges, or turns. One contributing factor in these crashes is inadequate visibility for truck drivers. Recent advances in video technology have heightened the prospect of improving commercial vehicle safety by improving drivers' vision around the truck. For such video systems to be implemented on heavy trucks, the systems/driver interface should be demonstrated as viable through research. This paper presents the Camera/Video Imaging Systems (C/VISs) developed at Virginia Tech Transportation Institute (VTTI), the methodology used to test them, and some results obtained.
Technical Paper

Effectiveness of Workload-Based Drowsy Driving Countermeasures

2019-04-02
2019-01-1228
This study evaluated the effectiveness of alternative workload-based interventions intended to restore driver alertness following drowsy episodes. Unlike traditional drowsy driving studies, this experiment did not target sleep-deprived individuals, but rather studied normally rested drivers under the assumption that low-workload environments could trigger drowsy driving episodes. The study served as a proof of concept for varying the nature and onset of countermeasure interventions intended to disrupt the drowsiness cycle. Interventions to combat drowsiness attempted to target driver workload, either physical or cognitive, and included two primary treatment conditions: 1) physical workload to increase driver steering demands and 2) trivia-based interactive games to mentally challenge drivers. A benchmark comparison condition using music was also investigated to contrast the relative influence of workload-based interventions with passive listening to musical arrangements.
Journal Article

Enhanced Camera/Video Imaging Systems (E-C/VISs) on Heavy Vehicles

2008-10-07
2008-01-2627
Large trucks were involved in more than 26,000 crashes between April 2001 and December 2003 as a result of making lane changes, merges, and turns [1]. As an alternative to mirrors (surrogate system), or to be used in combination with mirrors (enhancement system), the industry has been developing Camera/Video Imaging Systems (C/VISs) directed toward improving visibility to the sides and rear of heavy vehicles. The current study describes development of an Enhanced C/VIS (E-C/VIS) directed at improving visibility in less favorable environmental conditions, such as nighttime and inclement weather.
Journal Article

Evaluation of Forward Collision Warning System Visual Alert Candidates and SAE J2400

2009-04-20
2009-01-0547
Forward Collision Warning (FCW) systems are intended to alert drivers when they may be at risk of a rear-end crash with a vehicle directly ahead unless they take immediate action. A forward collision visual alert (FCVA) is recommended as part of a multi-modality FCW system crash alert approach also including auditory and/or haptic crash alert components. SAE J2400 recommends that a conventional dashboard location shall not be used for the FCVA, since such an alert may distract the driver from the crash threat ahead (instead of helping the driver visually orient toward the crash threat). This research examined the merit of this recommendation by examining the effectiveness of instrument panel, head-up display, and (vehicle-centerline) top-of-dashboard FCVA candidates. In this static on-road study, 49 subjects (20–70 years old) made rapid judgments on the presence and nature of scene changes over two successive forward scene exposures controlled by a visual occlusion window.
Technical Paper

Lateral Controllability for Automated Driving (SAE Level 2 and Level 3 Automated Driving Systems)

2021-04-06
2021-01-0864
In this study we collect and analyze data on how hands-free automated lane centering systems affect the controllability of a hazardous event during an operational situation by a human operator. Through these data and their analysis, we seek to answer the following questions: Is Level 2 and Level 3 automated driving inherently uncontrollable as a result of a steering failure? Or, is there some level of operator control of hazardous situations occurring during Level 2 and Level 3 automated driving that can reasonably be expected, given that these systems still rely on a driver as the primary fall back. The controllability focus group experiments were carried out using an instrumented MY15 Jeep® Cherokee with a prototype Level 2 automated driving system that was modified to simulate a hands-free steering system on a closed track with speeds up to 110kph. The vehicle was also fitted with supplemental safety measures to ensure experimenter control.
Journal Article

Modeling/Analysis of Pedestrian Back-Over Crashes from NHTSA's SCI Database

2011-04-12
2011-01-0588
An analysis of the first 35 back-over crashes reported by NHTSA's Special Crash Investigations unit was undertaken with two objectives: (1) to test a hypothesized classification of backing crashes into types, and (2) to characterize scenario-specific conditions that may drive countermeasure development requirements and/or objective test development requirements. Backing crash cases were sorted by type, and then analyzed in terms of key features. Subsequent modeling of these SCI cases was done using an adaptation of the Driving Reliability and Error Analysis Methodology (DREAM) and Cognitive Reliability and Error Analysis Methodology (CREAM) (similar to previous applications, for instance, by Ljung and Sandin to lane departure crashes [10]), which is felt to provide a useful tool for crash avoidance technology development.
Technical Paper

Radio Usage: Observations from the 100-Car Naturalistic Driving Study

2007-04-16
2007-01-0441
This paper discusses radio usage habits observed during analysis of 700 hours of video sampled from the 100-Car Naturalistic Driving Study database. Analysts used large-scale printouts of each vehicle's radio faceplate and recorded interactions based on video analysis of hand movement and location (without the assistance of audio recordings). The duration and specific manipulations or adjustments were recorded for each interaction. The results summarize the length and type of interactions, most often-used controls, and total percentage of time drivers interacted with the radio.
Technical Paper

Target Detection Distances and Driver Performance with Swiveling HID Headlamps

2004-05-10
2004-01-2258
Twent-two participants of varying ages detected roadside targets in two consecutive dynamic evaluations of a horizontally swiveling headlamp vehicle and a vehicle with the same headlamps that did not swivel. Participants detected targets as they drove unlighted low-speed public roads. Scenarios encountered were intersection turns, and curves with approximate radii of 70-90m, 120-140m, 170-190m, and 215-220m. Results from the first study found improved detection distances from the swiveling headlamps in left curves, but unexpectedly decreased detection distances in larger radius right hand curves. The swiveling algorithm was altered for the second study, and the headlamps used did not have the same beam pattern as in the first study. Results from the second study again found improved detection distances from the swiveling headlamps while in the larger radius right hand curves fixed and swivel were not statistically different.
Technical Paper

The Relative Risks of Secondary Task Induced Driver Distraction

2008-10-20
2008-21-0001
Driver distraction, defined here as engaging in a secondary task or activity that is not central to the primary task of driving, has been shown to be a contributing factor for many crashes. The secondary tasks and other activities in which drivers choose to engage while driving is also known to be highly varied, including very complex activities(e.g., text messaging on a cellular device) to very simple activities (e.g., selecting a radio preset). Several important distinctions affect the relative risk of engaging in these tasks. Recent data from large-scale instrumented vehicle studies (i.e., “naturalistic” driving studies like the recently released “100 car study” (1)) have begun to provide data where the relative risk, in terms of crash and near crash involvement, can be directly assessed for differing secondary tasks. These data have provided some important insights into the features that create risk.
X