Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Adaptive Coupling Methodology for Fast Time-Domain Distributed Heterogeneous Co-Simulation

2010-04-12
2010-01-0649
In the automotive industry well-established different simulation tools targeting different needs are used to mirror the physical behavior of domain specific components. To estimate the overall system behavior coupling of these components is necessary. As systems become more complex, simulation time increases rapidly by using traditional coupling approaches. Reducing simulation time by still maintaining accuracy is a challenging task. Thus, a coupling methodology for co-simulation using adaptive macro step size control is proposed. Convergence considerations of the used algorithms and scheduling of domain specific components are also addressed. Finally, the proposed adaptive coupling methodology is examined by means of a cross-domain co-simulation example describing a hybrid electric vehicle. Considerable advantages in terms of simulation time reduction are presented and the trade-off between simulation time and accuracy is depicted.
Technical Paper

Stability Analysis of a Two-Voltage Vehicle Electrical System Based on Co-Simulation

2012-04-16
2012-01-0012
In the automotive industry a strong trend towards electrification is determined. It offers the possibility of a more flexible actuation of the vehicle systems and can therefore reduce the fuel consumption and CO₂ emissions for modern vehicles. This is not only valid for typical drive train components, e.g., for hybrid or pure electric vehicles, but also for chassis components and auxiliaries like power-steering pump or air-conditioning compressor. However, a further electrification is limited by the 14V power net of conventional passenger cars. The high electric currents required by new/additional electrical components may lead to increased line losses and instability in the vehicle electrical system. With the introduction of a medium voltage level (≺60V) these problems can be circumvented.
X