Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Evaluation of Intersection Assistance Systems Based on Vehicular Communication Systems

2014-04-01
2014-01-0162
Within this work we demonstrate the implementation and evaluation of a vehicle-to-vehicle based intersection assistance system, relying only on communication between the vehicles and not requiring any communication with infrastructural components as it is the case with typical complex intersection assistance systems. It also requires no additional information like right-of-way or maps and works out-of-the-box for nearly all types of intersections. The intersection assistance system utilizes GPS, yaw rate, vehicle acceleration, speed and heading as indicators for a 3D path prediction. While the x-y layer aids in the detection of possible collisions, the z axis is used for detecting bridges and overpasses. By applying several sophisticated filter levels and algorithms, the amount of false positives can massively be reduced while the true positives can be maintained. Finally, the developed simple intersection assistance system is compared to a sophisticated intersection assistance system.
Technical Paper

System Level Modeling, Simulation and Verification Workflow for Safety-Critical Automotive Embedded Systems

2014-04-01
2014-01-0210
Automotive electric and electronic (E/E) systems are key drivers for innovation in today's vehicles. While new functions are delivering eco-friendliness (hybrid and pure electric vehicles, etc.), assistance/comfort (drive-by-wire, park-assist, etc.) and active safety (electronic stability control, lane-change-assist, brake-assist, etc.) their inherent complexity is challenging manufacturers and suppliers. At the same time, functional safety of the product is a key issue: During the whole car's product life cycle, there are many potential risks for physical injuries, or even worse, fatalities. Therefore, these potential sources of harm should strictly be avoided. In this work, we focus on a powerful method for verification and validation activities during early phases of the development, namely simulation. Simulation is one of the main methods for verification stated by the functional safety standard ISO 26262.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
X