Refine Your Search

Topic

Author

Search Results

Technical Paper

A Dynamic Model of Automotive Air Conditioning Systems

2005-04-11
2005-01-1884
A dynamic computer model of automotive air conditioning systems was developed. The model uses simulation software for the coding of 1-D heat transfer, thermodynamics, fluid flow, and control valves. The same software is used to model 3-D solid dynamics associated with mechanical mechanisms of the compressor. The dynamics of the entire AC system is thus simulated within the same software environment. The results will show the models potential applications in component and system design, calibration and control.
Technical Paper

A Filter Seal Model for Point Mobility Prediction of Air Induction Systems

2006-04-03
2006-01-1209
Virtual design validation of an air induction system (AIS) requires a proper finite element (FE) assembly model for various simulation based design tasks. The effect of the urethane air filter seal within an AIS assembly, however, still poses a technical challenge to the modeling of structural dynamic behaviors of the AIS product. In this paper, a filter seal model and its modeling approach for AIS assemblies are introduced, by utilizing the feature finite elements and empiric test data. A bushing element is used to model the unique nonlinear stiffness and damping properties of the urethane seal, as a function of seal orientation, preloading, temperature and excitation frequency, which are quantified based on the test data and empiric formula. Point mobility is used to character dynamic behaviors of an AIS structure under given loadings, as a transfer function in frequency domain.
Technical Paper

A Reusable Control System Architecture for Hybrid Powertrains

2002-10-21
2002-01-2808
System integration is the path to successful entry of hybrid electric vehicle (HEV) technology into the marketplace. A modular solution capable of meeting varying customer requirements is needed. The controller must possess a flexible hierarchical architecture that insures cross-platform compatibility and provides adaptability for various engine, motor, transmission, and battery configurations. A hybrid powertrain supervisory controller (PSC) has been designed for an advanced parallel-type HEV prototype, which uses a continuously variable transmission (CVT). The controller schedules torque commands for the engine and motor and chooses the transmission ratio to meet driver demanded acceleration. The controller is organized around a state machine, which determines how best to employ powertrain components to satisfy the driver while maximizing fuel economy.
Technical Paper

Aligning Human-System Integration and Systems Engineering

2004-10-18
2004-21-0021
One challenge facing automotive product development teams is the inclusion of the Human System Integration (HSI) community – consisting of human factors professionals, graphic and industrial designers, rapid prototyping software engineers, electronic hardware engineers, and systems engineers – in the Product Development Process (PDP). In order to achieve this integration, Visteon looked to the methods of systems engineering currently employed throughout the PDP. Overlaying the HSI process with an accepted systems engineering process description known as the N2 (N-squared) chart resulted in the outlining of expected inputs to the HSI process team, definitions of processes undertaken by the team, and expected outputs of those processes.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Application of DOE Methods to RPM-Domain Data for Hydraulic Steering Pump NVH Improvement

2003-05-05
2003-01-1431
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and optimization of a hydraulic steering pump for NVH performance. DOE methods were applied to RPM-domain data to examine the effect of several different factors, as well as the interactions between these factors, on pump NVH. Whereas most DOE analyses typically consider only a single response variable, the present work considered multiple response variables. Specifically, pump NVH performance curves for several pump rotational orders over a range of shaft speeds were analyzed. Thus, it was possible to determine the effect of the factors in question over the entire speed range of pump operation, rather than a single speed or setting. Statistical methods were applied to determine which factors and interactions had a significant effect on pump NVH. These factors were used to construct an empirical mathematical prediction model for NVH performance.
Technical Paper

Compressor Body Temperature and Lubrication

2013-04-08
2013-01-1501
The paper addresses compressor body temperature (crankcase) importance to the vehicle AC system long-term durability. Majority of OEM vehicle test evaluation is to see if AC system can pass compressor discharge temperature and discharge pressure targets. Most OEMs adopt 130°C max compressor discharge temperature and 2350 kpag head pressure as the target. From the field, although some of the compressor failure results from a high compression ratio, and compressor discharge temperature that are caused by the poor front end airflow, etc., high percentage compressor failed systems exhibit not too high compression ratio and compressor discharge temperature, but having the trace of high temperature in the shaft area, gasket area, etc. With introducing more and more variable swash plate compressor applications, OEMs start to see more and more compressor failures that are not related to a high compressor discharge temperature but the trace of high compressor body temperature.
Technical Paper

Correlation Study of Exhaust Manifold - Lab Test Results vs Customer Fleet Results

2002-03-04
2002-01-1317
The purpose of this study is to develop specifically a correlation between Exhaust Manifold Cracking Laboratory Test results and 150,000 mile customer fleet usage test results. The study shows that the exhaust manifold design meets the reliability requirements of 10 years or 150,000 miles, given 90th percentile customer usage without an evidence of cracking or audible leaks. This correlation between the Lab Test and the customer Fleet results has been expressed as an acceleration factor. An acceleration factor is the ratio of how much quicker the engine dynamometer test ( i.e. Lab Test ) can accumulate the effect of customer usage over time versus the customers themselves. The acceleration factor is provided for useful life time period of 10 years or 150,000 miles. The recommended acceleration factor, determined in this study, is 38 to 1, comparing the engine dynamometer test ( i.e. Lab Test ) results to 150,000 mile modular truck customer fleet field results.
Technical Paper

DSS, The Driver Stability System of Visteon

2002-03-04
2002-01-0782
This paper introduces the Driver Stability System (DSS) at Visteon. DSS is a new active comfort / safety system for automobiles which controls the seat bolsters independently in real time to enhance the lateral support of the occupants. Under turning maneuvers, DSS reacts to the vehicle dynamics to provide an increased contact area between the occupants and their seats, allowing optimal occupant location with respect to such variables as steering wheel angle, lateral acceleration, yaw rate, and vehicle velocity. The lateral force compensation is directly coupled to the dynamic movement of vehicle chassis and the change of road profile. The system consists of the seat bolster assembly including DC motors, wheel speed sensors, steering wheel sensor, lateral accelerometer, yaw rate sensor, and electronic control unit (ECU). This paper also discusses the control concept of DSS and its realistic controller structure.
Technical Paper

Design Evaluations On IRS Axle System NVH Through Analytical Studies

2005-05-16
2005-01-2289
Axle whine is an important driveline NVH issue that originates in the hypoid gear sets due to transmitted error excitations. Improving gear quality to reduce the transmitted error has a cost penalty, as well as practical manufacturing limitations. On the other hand, axle system dynamics play a significant role in the system response to gear excitations and in transmissibility from gears to the structure. Analytical tools can be used to tune axle system dynamics in order to alleviate noise and vibration issues. Analytical results can be utilized to evaluate design alternatives, reduce the number of prototypes, thus to reduce product development time. However, analytical results need to be verified and correlated with test results. In this paper, dynamic behavior of a driveline system is investigated. The finite element model is validated at both component and system levels using frequency response functions and mode shapes.
Technical Paper

Development and Implementation of a Tool for Modeling Driveline Systems

2000-12-04
2000-01-3525
In order to facilitate the modeling of vehicle drivelines in ADAMS, an ADAMS/View driveline tool was developed with the aid of Mechanical Dynamics, Inc (MDI). Known as Visteon Axle & Driveline Simulation-Dynamics (VADSIM-DYNA) this tool is used to supply customers with driveline models for use in their full vehicle modeling as well as for predicting forces in the driveline. Of specific interest is a method for calculating the mesh point of a hypoid gear set using the geometry of the ring and pinion gears, and a custom force statement for calculation of the mesh point reactions at the center of gravity for both the pinion and ring gears. With the introduction of ADAMS/Driveline, The comapny has worked with MDI to implement VADSIM-DYNA into the base product. With the aid of VADSIM-DYNA the ability to provide customers with ADAMS models of driveline components and systems has been greatly enhanced.
Technical Paper

Development of a Fuel Efficient Multipurpose 75W-90 Gear Lubricant

2003-10-27
2003-01-1992
Automotive gear oil development has expanded beyond the historical requirements of emphasizing wear protection to encompass modern needs for fuel economy and limited slip frictional properties. This paper describes the development process of a new generation, fuel efficient gear lubricant for use in light duty vehicles. A systematic formulation approach was used, encompassing fluid viscometrics and additive optimization. Performance testing in both laboratory and vehicle tests is described. Though standard GL-5 tests were used to confirm oxidation, wear and corrosion performance, emphasis is given to those methods used for optimizing fuel economy.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Driver Steering Performance Using Joystick vs. Steering Wheel Controls

2003-03-03
2003-01-0118
A fixed-base driving simulator with a 14-degree of freedom vehicle dynamics model was used to compare the lane tracking performance of test subjects using a joystick steering controller to that using a conventional steering wheel. Three driving situations were studied: a) straight-line highway driving, b) winding road driving (country road), and c) evasive maneuvering - a double lane change event. In addition, three different joystick force-feedback settings were evaluated: i) linear force feedback, ii) non-linear, speed sensitive force feedback and iii) no force feedback. A conventional steering wheel with typical passenger car force feedback tuning was used for all of the driving events for comparison.
Technical Paper

GENPAD® - Ergonomic Packaging

2002-03-04
2002-01-1241
GENPAD® is a knowledge-based, three-dimensional modeling computer tool developed by Visteon to create occupant-friendly interiors. GENPAD quickly and easily produces zones to evaluate ergonomic aspects of vehicle interiors such as reach, clearance, vision, and reflection. These zones are produced from automated design studies based on experience and engineering standards accepted by the automotive industry. Without GENPAD, a single study requires an experienced engineer 4-6 hours to complete. Multiple studies require several engineers weeks to perform. The methods used are also error-prone due to complex instructions. To overcome these challenges, GENPAD provides over 50 ergonomic packaging studies that produce accurate results in minutes, not weeks, every time.
Technical Paper

Improved Hydraulic Power Steering Pump Design Using Computer Tools

2005-04-11
2005-01-1269
A hydraulic steering pump system will be considered in this report. The objective is to improve the design of a specific power steering pump using computational fluid dynamics (CFD) tools. The first part of this report deals with a pump oil seal leak. The thermal and fluid environments have been simulated. A variable fluid viscosity is used, showing a 15-20% increase in peak temperature. Potential improvements in product design have been suggested. The second part deals with using computer tools to reduce redundant testing. This includes use of parametric approach towards optimization. A rotating grid approach (basic moving mesh technique) is used.
Technical Paper

Instrument Clusters for Electric Vehicles

2001-03-05
2001-01-3959
Environmental concerns and changes in regulations around the world are turning mass-production electric vehicles (EVs) a reality. While the average driver is very familiar with the instruments available for the current internal combustion engine vehicles (ICEVs), the same does not hold for EVs. They require unique gages and tell-tales (also known as warning lights), tailored to their architecture, operating modes and intended use. This paper makes a comparison of the instruments used in ICEVs and EVs, suggesting a minimum set and standardization of the associated symbols.
Technical Paper

Interior Fittings – A Global View

2003-03-03
2003-01-1175
In today's global economy, the automotive design engineer's responsibilities are made more complex by the differences between regulatory requirements of the various global markets. This paper compares instrument panel head impact requirements of FMVSS 201 with its European counterparts, ECE 21, and EEC/74/60, Interior Fittings. It describes the similarities and differences between these regulations and explains the unique requirements for each market. It then compares processes for development and validation testing in both markets. It also covers related topics like self-certification, witness testing, radii, projections, and interior compartment doors. The cockpit design engineer will gain an understanding of the factors involved in ensuring that their design fully meets the requirements of the subject regulations.
Technical Paper

International Product User Research: Concurrent Studies Comparing Touch Screen Feedback in Europe and North America

2009-04-20
2009-01-0779
This paper describes two studies; each conducted concurrently in North America and Europe to assess subjective impressions and simulated driving task performance using a touch screen interface with different types of auditory and haptic feedback. The first study investigated subjective impressions of four types of touch screen feedback in a static laboratory setting. The second study investigated the influence of the same four touch screen feedback types on simulated driving task performance using the lane change test (LCT). Results of the first study revealed significant similarities and differences in subjective impressions between respondents in each of the two regions studied. Results of the second study revealed differences in task performance that suggest distinct participant strategies in each of the two regions studied.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
X